INTRODUCTION TO TRIGONOMETRY 117B
Figure 12.5
Thus
sinX=40
41,tanX=40
9= 44
9,cosecX=41
40= 11
40,secX=41
9= 45
9andcotX=9
40Problem 4. If sinθ= 0 .625 and cosθ= 0. 500
determine, without using trigonometric tables
or calculators, the values of cosecθ, secθ, tanθ
and cotθ.cosecθ=1
sinθ=1
0. 625=1.60secθ=1
cosθ=1
0. 500=2.00tanθ=sinθ
cosθ=0. 625
0. 500=1.25cotθ=cosθ
sinθ=0. 500
0. 625=0.80Problem 5. PointAlies at co-ordinate (2, 3)
and pointB at (8, 7). Determine (a) the dis-
tanceAB, (b) the gradient of the straight lineAB,
and (c) the angleABmakes with the horizontal.(a) PointsAandBare shown in Fig. 12.6(a).In Fig. 12.6(b), the horizontal and vertical lines
ACandBCare constructed.Since ABC is a right-angled triangle, and
AC=(8−2)=6 andBC=(7−3)=4, then by
Pythagoras’ theoremAB^2 =AC^2 +BC^2 = 62 + 42
and AB=√
(6^2 + 42 )=√
52 =7.211,
correct to 3 decimal placesFigure 12.6(b) The gradient ofABis given by tanA,i.e.gradient=tanA=BC
AC=4
6=2
3
(c)The angleABmakes with the horizontalis
given by tan−^123 =33.69◦.Now try the following exercise.Exercise 53 Further problems on trigono-
metric ratios of acute- In triangleABCshown in Fig. 12.7, find
sinA, cosA, tanA, sinB, cosBand tanB.
[
sinA=^35 , cosA=^45 , tanA=^34
sinB=^45 , cosB=^35 , tanB=^43]- If cosA=
15
17find sinAand tanA, in fractionform.[
sinA=8
17, tanA=8
15]