TRIGONOMETRIC IDENTITIES AND EQUATIONS 167
B
LHS=
tanx+secx
secx
(
1 +
tanx
secx
)
=
sinx
cosx
+
1
cosx
(
1
cosx
)
⎛
⎜
⎝^1 +
sinx
cosx
1
cosx
⎞
⎟
⎠
=
sinx+ 1
( cosx
1
cosx
)[
1 +
(
sinx
cosx
)(
cosx
1
)]
=
sinx+ 1
( cosx
1
cosx
)
[1+sinx]
=
(
sinx+ 1
cosx
)(
cosx
1 +sinx
)
=1 (by cancelling)=RHS
Problem 3. Prove that
1 +cotθ
1 +tanθ
=cotθ.
LHS=
1 +cotθ
1 +tanθ
=
1 +
cosθ
sinθ
1 +
sinθ
cosθ
=
sinθ+cosθ
sinθ
cosθ+sinθ
cosθ
=
(
sinθ+cosθ
sinθ
)(
cosθ
cosθ+sinθ
)
=
cosθ
sinθ
=cotθ=RHS
Problem 4. Show that
cos^2 θ−sin^2 θ= 1 −2 sin^2 θ.
From equation (2), cos^2 θ+sin^2 θ=1, from which,
cos^2 θ= 1 −sin^2 θ.
Hence, LHS
=cos^2 θ−sin^2 θ=(1−sin^2 θ)−sin^2 θ
= 1 −sin^2 θ−sin^2 θ= 1 −2 sin^2 θ=RHS
Problem 5. Prove that
√(
1 −sinx
1 +sinx
)
=secx−tanx.
LHS=
√(
1 −sinx
1 +sinx
)
=
√{
(1−sinx)(1−sinx)
(1+sinx)(1−sinx)
}
=
√{
(1−sinx)^2
(1−sin^2 x)
}
Since cos^2 x+sin^2 x=1 then 1−sin^2 x=cos^2 x
LHS=
√{
(1−sinx)^2
(1−sin^2 x)
}
=
√{
(1−sinx)^2
cos^2 x
}
=
1 −sinx
cosx
=
1
cosx
−
sinx
cosx
=secx−tanx=RHS
Now try the following exercise.
Exercise 73 Further problems on trigono-
metric identities
In Problems 1 to 6 prove the trigonometric
identities.
- sinxcotx=cosx
2.
1
√
(1−cos^2 θ)
=cosecθ
- 2 cos^2 A− 1 =cos^2 A−sin^2 A
4.
cosx−cos^3 x
sinx
=sinxcosx
- (1+cotθ)^2 +(1−cotθ)^2 =2 cosec^2 θ
6.
sin^2 x( secx+cosecx)
cosxtanx
= 1 +tanx
16.3 Trigonometric equations
Equations which contain trigonometric ratios are
calledtrigonometric equations. There are usually
an infinite number of solutions to such equations;
however, solutions are often restricted to those
between 0◦and 360◦.
A knowledge of angles of any magnitude is essen-
tial in the solution of trigonometric equations and
calculators cannot be relied upon to give all the