TRIGONOMETRIC IDENTITIES AND EQUATIONS 167B
LHS=tanx+secxsecx(
1 +tanx
secx)=sinx
cosx+1
cosx
(
1
cosx)⎛⎜
⎝^1 +sinx
cosx
1
cosx⎞⎟
⎠=sinx+ 1( cosx
1
cosx)[
1 +(
sinx
cosx)(
cosx
1)]=sinx+ 1( cosx
1
cosx)
[1+sinx]=(
sinx+ 1
cosx)(
cosx
1 +sinx)=1 (by cancelling)=RHSProblem 3. Prove that1 +cotθ
1 +tanθ=cotθ.LHS=1 +cotθ
1 +tanθ=1 +cosθ
sinθ1 +sinθ
cosθ=sinθ+cosθ
sinθ
cosθ+sinθ
cosθ=(
sinθ+cosθ
sinθ)(
cosθ
cosθ+sinθ)=cosθ
sinθ=cotθ=RHSProblem 4. Show that
cos^2 θ−sin^2 θ= 1 −2 sin^2 θ.From equation (2), cos^2 θ+sin^2 θ=1, from which,
cos^2 θ= 1 −sin^2 θ.
Hence, LHS
=cos^2 θ−sin^2 θ=(1−sin^2 θ)−sin^2 θ
= 1 −sin^2 θ−sin^2 θ= 1 −2 sin^2 θ=RHSProblem 5. Prove that
√(
1 −sinx
1 +sinx)
=secx−tanx.LHS=√(
1 −sinx
1 +sinx)
=√{
(1−sinx)(1−sinx)
(1+sinx)(1−sinx)}=√{
(1−sinx)^2
(1−sin^2 x)}Since cos^2 x+sin^2 x=1 then 1−sin^2 x=cos^2 xLHS=√{
(1−sinx)^2
(1−sin^2 x)}
=√{
(1−sinx)^2
cos^2 x}=1 −sinx
cosx=1
cosx−sinx
cosx
=secx−tanx=RHSNow try the following exercise.Exercise 73 Further problems on trigono-
metric identitiesIn Problems 1 to 6 prove the trigonometric
identities.- sinxcotx=cosx
2.1
√
(1−cos^2 θ)=cosecθ- 2 cos^2 A− 1 =cos^2 A−sin^2 A
4.cosx−cos^3 x
sinx=sinxcosx- (1+cotθ)^2 +(1−cotθ)^2 =2 cosec^2 θ
6.sin^2 x( secx+cosecx)
cosxtanx= 1 +tanx16.3 Trigonometric equations
Equations which contain trigonometric ratios are
calledtrigonometric equations. There are usually
an infinite number of solutions to such equations;
however, solutions are often restricted to those
between 0◦and 360◦.
A knowledge of angles of any magnitude is essen-
tial in the solution of trigonometric equations and
calculators cannot be relied upon to give all the