COMPOUND ANGLES 181
B
Since − 15 ◦ 43 ′ is the same as− 15 ◦ 43 ′+ 360 ◦,
i.e. 344◦ 17 ′, then the solutions areθ= 77 ◦ 39 ′or
344 ◦ 17 ′, which may be checked by substituting into
the original equation.
Problem 10. Solve the equation
3 .5 cosA− 5 .8 sinA= 6 .5 for 0◦≤A≤ 360 ◦.
Let 3.5 cosA− 5 .8 sinA=Rsin(A+α)
=R[sinAcosα+cosAsinα]
=(Rcosα) sinA+(Rsinα) cosA
Equating coefficients gives:
3. 5 =Rsinα, from which, sinα=
3. 5
R
and − 5. 8 =Rcosα, from which, cosα=
− 5. 8
R
There is only one quadrant in which both sine is
positiveandcosine is negative, i.e. the second, as
shown in Fig. 18.7.
Figure 18.7
From Fig. 18.7, R=
√
[(3.5)^2 +(− 5 .8)^2 ]= 6. 774
andθ=tan−^1
3. 5
5. 8
= 31 ◦ 7 ′.
Henceα= 180 ◦− 31 ◦ 7 ′= 148 ◦ 53 ′.
Thus
3 .5cosA− 5 .8sinA= 6 .774 sin (A+ 148 ◦ 53 ′)= 6. 5
Hence sin(A+ 148 ◦ 53 ′)=
6. 5
6. 774
, from which,
(A+ 148 ◦ 53 ′)=sin−^1
6. 5
6. 774
= 73 ◦ 39 ′or 106◦ 21 ′
Thus A= 73 ◦ 39 ′− 148 ◦ 53 ′=− 75 ◦ 14 ′
≡(− 75 ◦ 14 ′+ 360 ◦)= 284 ◦ 46 ′
or A= 106 ◦ 21 ′− 148 ◦ 53 ′=− 42 ◦ 32 ′
≡(− 42 ◦ 32 ′+ 360 ◦)= 317 ◦ 28 ′
The solutions are thus A= 284 ◦ 46 ′or 317◦ 28 ′,
which may be checked in the original equation.
Now try the following exercise.
Exercise 81 Further problems on the
conversion ofasinωt+bcosωtinto
Rsin(ωt+α)
In Problems 1 to 4, change the functions into the
formRsin(ωt±α).
- 5 sinωt+8 cosωt [9.434 sin(ωt+ 1 .012)]
- 4 sinωt−3 cosωt [5 sin(ωt− 0 .644)]
3.−7 sinωt+4 cosωt
[8.062 sin(ωt+ 2 .622)]
4.−3 sinωt−6 cosωt
[6.708 sin(ωt− 2 .034)]
- Solve the following equations for values ofθ
between 0◦and 360◦: (a) 2 sinθ+4 cosθ= 3
(b) 12 sinθ−9 cosθ[=7.
(a) 74◦ 26 ′or 338◦ 42 ′
(b) 64◦ 41 ′or 189◦ 3 ′
]
- Solve the following equations for
0 ◦<A< 360 ◦: (a) 3 cosA+2 sinA= 2. 8
(b) 12 cosA−4 sin[A= 11
(a) 72◦ 44 ′or 354◦ 38 ′
(b) 11◦ 9 ′or 311◦ 59 ′
]
- The third harmonic of a wave motion is given
by 4.3 cos 3θ− 6 .9 sin 3θ. Express this in the
formRsin(3θ±α). [8.13 sin(3θ+ 2 .584)] - The displacementxmetres of a mass from
a fixed point about which it is oscillating is
given byx= 2 .4 sinωt+ 3 .2 cosωt, wheret
is the time in seconds. Expressxin the form
Rsin(ωt+α). [x= 4 .0 sin(ωt+ 0 .927)m] - Two voltages,v 1 =5 cosωtand
v 2 =−8 sinωtare inputs to an analogue cir-
cuit. Determine an expression for the output
voltage if this is given by (v 1 +v 2 ).
[9.434 sin(ωt+ 2 .583)]