184 GEOMETRY AND TRIGONOMETRYi.e. instantaneous power,
p=25[cosπ/ 6 −cos (2ωt−π/6)]Now try the following exercise.Exercise 83 Further problems on changing
products of sines and cosines into sums or
differencesIn Problems 1 to 5, express as sums or differ-
ences:- sin 7tcos 2t
[ 1
2 (sin 9t+sin 5t)]- cos 8xsin 2x
[ 1
2 (sin 10x−sin 6x)]- 2 sin 7tsin 3t [cos 4t−cos 10t]
- 4 cos 3θcosθ [2(cos 4θ+cos 2θ)]
- 3 sin
π
3cosπ
6[
3
2(
sinπ
2+sinπ
6)]- Determine
∫
2 sin 3t[costdt−cos 4t
4−cos 2t
2+c]- Evaluate
∫ π
204 cos 5xcos 2xdx[
−20
21]- Solve the equation: 2 sin 2φsinφ=cosφin
the rangeφ=0toφ= 180 ◦.
[30◦,90◦or 150◦]
18.5 Changing sums or differences of
sines and cosines into products
In the compound-angle formula let,(A+B)=X
and
(A−B)=YSolving the simultaneous equations gives:A=X+Y
2andB=X−Y
2Thus sin(A+B)+sin(A−B)=2 sinAcosB
becomes,
sinX+sinY=2 sin(
X+Y
2)
cos(
X−Y
2)
(5)Similarly,sinX−sinY=2 cos(
X+Y
2)
sin(
X−Y
2)
(6)cosX+cosY=2 cos(
X+Y
2)
cos(
X−Y
2)
(7)cosX−cosY=−2 sin(
X+Y
2)
sin(
X−Y
2)
(8)Problem 18. Express sin 5θ+sin 3θ as a
product.From equation (5),sin 5θ+sin 3θ=2 sin(
5 θ+ 3 θ
2)
cos(
5 θ− 3 θ
2)=2 sin 4θcosθProblem 19. Express sin 7x−sinx as a
product.From equation (6),sin 7x−sinx=2 cos(
7 x+x
2)
sin(
7 x−x
2)=2 cos 4xsin 3xProblem 20. Express cos 2t−cos 5t as a
product.From equation (8),cos 2t−cos 5t=−2 sin(
2 t+ 5 t
2)
sin(
2 t− 5 t
2)=−2 sin7
2tsin(
−3
2t)
=2 sin7
2tsin3
2t
(
since sin(
−3
2t)
=−sin3
2t)Problem 21. Show thatcos 6x+cos 2x
sin 6x+sin 2x=cot 4x.