ALGEBRA 3
A
Now try the following exercise.
Exercise 2 Further problems on brackets,
factorization and precedence
- Simplify 2(p+ 3 q−r)−4(r−q+ 2 p)+p.
[− 5 p+ 10 q− 6 r] - Expand and simplify (x+y)(x− 2 y).
[x^2 −xy− 2 y^2 ] - Remove the brackets and simplify:
24 p−[2{3(5p−q)−2(p+ 2 q)}+ 3 q].
[11q− 2 p] - Factorize 21a^2 b^2 − 28 ab [7ab(3ab−4)].
- Factorize 2xy^2 + 6 x^2 y+ 8 x^3 y.
[2xy(y+ 3 x+ 4 x^2 )] - Simplify 2y+ 4 ÷ 6 y+ 3 ×[ 4 − 5 y.
2
3 y
− 3 y+ 12
]
- Simplify 3÷y+ 2 ÷y−1.
[
5
y
− 1
]
- Simplifya^2 − 3 ab× 2 a÷ 6 b+ab.[ab]
1.3 Revision of equations
(a) Simple equations
Problem 11. Solve 4− 3 x= 2 x− 11.
Since 4− 3 x= 2 x−11 then 4+ 11 = 2 x+ 3 x
i.e. 15= 5 xfrom which,x=
15
5
= 3
Problem 12. Solve
4(2a−3)−2(a−4)=3(a−3)− 1.
Removing the brackets gives:
8 a− 12 − 2 a+ 8 = 3 a− 9 − 1
Rearranging gives:
8 a− 2 a− 3 a=− 9 − 1 + 12 − 8
i.e. 3 a=− 6
and a=
− 6
3
=− 2
Problem 13. Solve
3
x− 2
=
4
3 x+ 4
.
By ‘cross-multiplying’: 3(3x+4)=4(x−2)
Removing brackets gives: 9 x+ 12 = 4 x− 8
Rearranging gives: 9 x− 4 x=− 8 − 12
i.e. 5 x=− 20
and x=
− 20
5
=− 4
Problem 14. Solve
(√
t+ 3
√
t
)
=2.
√
t
(√
t+ 3
√
t
)
= 2
√
t
i.e.
√
t+ 3 = 2
√
t
and 3 = 2
√
t−
√
t
i.e. 3 =
√
t
and 9 =t
(b) Transposition of formulae
Problem 15. Transpose the formula
v=u+
ft
m
to makefthe subject.
u+
ft
m
=vfrom which,
ft
m
=v−u
and m
(
ft
m
)
=m(v−u)
i.e. ft=m(v−u)
and f=
m
t
(v−u)
Problem 16. The impedance of an a.c. circuit
is given byZ=
√
R^2 +X^2. Make the reactance
Xthe subject.