240 VECTOR GEOMETRY
(i) From equation (2),
if p=a 1 i+a 2 j+a 3 k
and q=b 1 i+b 2 j+b 3 k
then p•q=a 1 b 1 +a 2 b 2 +a 3 b 3
When p= 2 i+j−k,
a 1 =2,a 2 =1 anda 3 =− 1
and whenq=i− 3 j+ 2 k,
b 1 =1,b 2 =−3 andb 3 = 2
Hence p•q=(2)(1)+(1)(−3)+(−1)(2)
i.e. p•q=− 3
(ii)p+q=(2i+j−k)+(i− 3 j+ 2 k)
= 3 i− 2 j+k
(iii)|p+q|=| 3 i− 2 j+k|
From equation (3),
|p+q|=
√
[3^2 +(−2)^2 + 12 ]=
√
14
(iv) From equation (3),
|p|=| 2 i+j−k|
=
√
[2^2 + 12 +(−1)^2 ]=
√
6
Similarly,
|q|=|i− 3 j+ 2 k|
=
√
[1^2 +(−3)^2 + 22 ]=
√
14
Hence|p|+|q|=
√
6 +
√
14 =6.191, correct
to 3 decimal places.
Problem 4. Determine the angle between vec-
torsoaandobwhen
oa=i+ 2 j− 3 k
and ob= 2 i−j+ 4 k.
An equation for cosθis given in equation (4)
cosθ=
a 1 b 1 +a 2 b 2 +a 3 b 3
√
(a^21 +a^22 +a^23 )
√
(b^21 +b^22 +b^23 )
Since oa=i+ 2 j− 3 k,
a 1 =1,a 2 =2 anda 3 =− 3
Since ob= 2 i−j+ 4 k,
b 1 =2,b 2 =−1 andb 3 = 4
Thus,
cosθ=
(1×2)+(2×−1)+(− 3 ×4)
√
(1^2 + 22 +(−3)^2 )
√
(2^2 +(−1)^2 + 42 )
=
− 12
√
14
√
21
=− 0. 6999
i.e.θ= 134. 4 ◦or 225. 6 ◦.
By sketching the position of the two vectors as
shown in Problem 1, it will be seen that 225.6◦is
not an acceptable answer.
Thus the angle between the vectorsoaandob,
θ=134.4◦.
Direction cosines
From Fig. 22.2,or=xi+yj+zkand from equa-
tion (3),|or|=
√
x^2 +y^2 +z^2.
Iformakes angles ofα,βandγwith the co-ordinate
axesi,jandkrespectively, then:
The direction cosines are:
cosα=
x
√
x^2 +y^2 +z^2
cosβ=
y
√
x^2 +y^2 +z^2
and cosγ=
y
√
x^2 +y^2 +z^2
such that cos^2 α+cos^2 β+cos^2 γ=1.
The values of cosα, cosβand cosγare called the
direction cosinesofor.
Problem 5. Find the direction cosines of
3 i+ 2 j+k.
√
x^2 +y^2 +z^2 =
√
32 + 22 + 12 =
√
14
The direction cosines are:
cosα=
x
√
x^2 +y^2 +z^2
=
3
√
14
=0.802
cosβ=
y
√
x^2 +y^2 +z^2
=
2
√
14
=0.535
and cosγ=
y
√
x^2 +y^2 +z^2
=
1
√
14
=0.267
(and hence α=cos−^10. 802 = 36. 7 ◦, β=cos−^1
0. 535 =57.7◦andγ=cos−^10. 267 = 74. 5 ◦).