Higher Engineering Mathematics

(Greg DeLong) #1
240 VECTOR GEOMETRY

(i) From equation (2),
if p=a 1 i+a 2 j+a 3 k
and q=b 1 i+b 2 j+b 3 k
then p•q=a 1 b 1 +a 2 b 2 +a 3 b 3
When p= 2 i+j−k,
a 1 =2,a 2 =1 anda 3 =− 1
and whenq=i− 3 j+ 2 k,
b 1 =1,b 2 =−3 andb 3 = 2
Hence p•q=(2)(1)+(1)(−3)+(−1)(2)
i.e. p•q=− 3
(ii)p+q=(2i+j−k)+(i− 3 j+ 2 k)

= 3 i− 2 j+k

(iii)|p+q|=| 3 i− 2 j+k|


From equation (3),

|p+q|=


[3^2 +(−2)^2 + 12 ]=


14

(iv) From equation (3),

|p|=| 2 i+j−k|

=


[2^2 + 12 +(−1)^2 ]=


6

Similarly,

|q|=|i− 3 j+ 2 k|

=


[1^2 +(−3)^2 + 22 ]=


14

Hence|p|+|q|=


6 +


14 =6.191, correct
to 3 decimal places.

Problem 4. Determine the angle between vec-
torsoaandobwhen

oa=i+ 2 j− 3 k
and ob= 2 i−j+ 4 k.

An equation for cosθis given in equation (4)


cosθ=

a 1 b 1 +a 2 b 2 +a 3 b 3

(a^21 +a^22 +a^23 )


(b^21 +b^22 +b^23 )

Since oa=i+ 2 j− 3 k,


a 1 =1,a 2 =2 anda 3 =− 3

Since ob= 2 i−j+ 4 k,


b 1 =2,b 2 =−1 andb 3 = 4

Thus,

cosθ=

(1×2)+(2×−1)+(− 3 ×4)

(1^2 + 22 +(−3)^2 )


(2^2 +(−1)^2 + 42 )

=

− 12

14


21

=− 0. 6999

i.e.θ= 134. 4 ◦or 225. 6 ◦.

By sketching the position of the two vectors as
shown in Problem 1, it will be seen that 225.6◦is
not an acceptable answer.
Thus the angle between the vectorsoaandob,
θ=134.4◦.

Direction cosines

From Fig. 22.2,or=xi+yj+zkand from equa-
tion (3),|or|=


x^2 +y^2 +z^2.
Iformakes angles ofα,βandγwith the co-ordinate
axesi,jandkrespectively, then:
The direction cosines are:

cosα=

x

x^2 +y^2 +z^2

cosβ=

y

x^2 +y^2 +z^2

and cosγ=

y

x^2 +y^2 +z^2

such that cos^2 α+cos^2 β+cos^2 γ=1.
The values of cosα, cosβand cosγare called the
direction cosinesofor.

Problem 5. Find the direction cosines of
3 i+ 2 j+k.


x^2 +y^2 +z^2 =


32 + 22 + 12 =


14

The direction cosines are:

cosα=

x

x^2 +y^2 +z^2

=

3

14

=0.802

cosβ=

y

x^2 +y^2 +z^2

=

2

14

=0.535

and cosγ=

y

x^2 +y^2 +z^2

=

1

14

=0.267

(and hence α=cos−^10. 802 = 36. 7 ◦, β=cos−^1
0. 535 =57.7◦andγ=cos−^10. 267 = 74. 5 ◦).
Free download pdf