252 COMPLEX NUMBERSnumber and its complex conjugate is always a
real number.For example,(3+j4)(3−j4)= 9 −j 12 +j 12 −j^216
= 9 + 16 = 25[(a+jb)(a−jb) may be evaluated ‘on sight’ as
a^2 +b^2 ].(iii)Division of complex numbersis achieved by
multiplying both numerator and denominator
by the complex conjugate of the denominator.
For example,
2 −j 5
3 +j 4=2 −j 5
3 +j 4×(3−j4)
(3−j4)=6 −j 8 −j 15 +j^220
32 + 42=− 14 −j 23
25=− 14
25−j23
25or− 0. 56 −j 0. 92Problem 5. IfZ 1 = 1 −j3,Z 2 =− 2 +j5 and
Z 3 =− 3 −j4, determine ina+jbform:(a)Z 1 Z 2 (b)Z 1
Z 3
(c)Z 1 Z 2
Z 1 +Z 2(d)Z 1 Z 2 Z 3(a)Z 1 Z 2 =(1−j3)(− 2 +j5)=− 2 +j 5 +j 6 −j^215=(− 2 +15)+j(5+6), sincej^2 =−1,= 13 +j 11(b)Z 1
Z 3=1 −j 3
− 3 −j 4=1 −j 3
− 3 −j 4×− 3 +j 4
− 3 +j 4=− 3 +j 4 +j 9 −j^212
32 + 42=9 +j 13
25=9
25+ j13
25or 0. 36 +j 0. 52(c)Z 1 Z 2
Z 1 +Z 2=(1−j3)(− 2 +j5)
(1−j3)+(− 2 +j5)=13 +j 11
− 1 +j 2, from part (a),=13 +j 11
− 1 +j 2×− 1 −j 2
− 1 −j 2=− 13 −j 26 −j 11 −j^222
12 + 22=9 −j 37
5=9
5−j37
5or 1. 8 −j 7. 4(d) Z 1 Z 2 Z 3 =(13+j11)(− 3 −j4), sinceZ 1 Z 2 = 13 +j11, from part (a)=− 39 −j 52 −j 33 −j^244=(− 39 +44)−j(52+33)= 5 −j 85Problem 6. Evaluate:(a)2
(1+j)^4(b) j(
1 +j 3
1 −j 2) 2(a) (1+j)^2 =(1+j)(1+j)= 1 +j+j+j^2= 1 +j+j− 1 =j 2(1+j)^4 =[(1+j)^2 ]^2 =(j2)^2 =j^24 =− 4Hence2
(1+j)^4=2
− 4=−1
2(b)1 +j 3
1 −j 2=1 +j 3
1 −j 2×1 +j 2
1 +j 2=1 +j 2 +j 3 +j^26
12 + 22=− 5 +j 5
5=− 1 +j 1 =− 1 +j(
1 +j 3
1 −j 2) 2
=(− 1 +j)^2 =(− 1 +j)(− 1 +j)= 1 −j−j+j^2 =−j 2