256 COMPLEX NUMBERSHence x=7 cos 35◦= 5. 734and y=7 sin 35◦= 4. 015Hence 7∠− 145 ◦=− 5. 734 −j 4. 015Alternatively7 ∠− 145 ◦=7 cos (− 145 ◦)+j7 sin (− 145 ◦)=− 5. 734 −j 4. 01523.7 Multiplication and division in
polar form
IfZ 1 =r 1 ∠θ 1 andZ 2 =r 2 ∠θ 2 then:
(i)Z 1 Z 2 =r 1 r 2 ∠(θ 1 +θ 2 ) and(ii)Z 1
Z 2=r 1
r 2∠(θ 1 −θ 2 )Problem 12. Determine, in polar form:
(a) 8∠ 25 ◦× 4 ∠ 60 ◦
(b) 3∠ 16 ◦× 5 ∠− 44 ◦× 2 ∠ 80 ◦(a) 8∠ 25 ◦× 4 ∠ 60 ◦=(8×4)∠(25◦+ 60 ◦)= 32 ∠ 85 ◦(b) 3∠ 16 ◦× 5 ∠− 44 ◦× 2 ∠ 80 ◦=(3× 5 ×2)∠[16◦+(− 44 ◦)+ 80 ◦]= 30 ∠ 52 ◦Problem 13. Evaluate in polar form(a)16 ∠ 75 ◦
2 ∠ 15 ◦(b)10 ∠π
4× 12 ∠π
2
6 ∠−π
3(a)16 ∠ 75 ◦
2 ∠ 15 ◦=16
2∠(75◦− 15 ◦)= 8 ∠ 60 ◦(b)10 ∠π
4× 12 ∠π
2
6 ∠−π
3=10 × 12
6∠(π4+π
2−(
−π
3))= 20 ∠13 π
12or 20 ∠−11 π
12or20 ∠ 195 ◦or 20 ∠− 165 ◦Problem 14. Evaluate, in polar form
2 ∠ 30 ◦+ 5 ∠− 45 ◦− 4 ∠ 120 ◦.Addition and subtraction in polar form is not possible
directly. Each complex number has to be converted
into cartesian form first.2 ∠ 30 ◦=2(cos 30◦+jsin 30◦)=2 cos 30◦+j2 sin 30◦= 1. 732 +j 1. 0005 ∠− 45 ◦=5(cos(− 45 ◦)+jsin(− 45 ◦))=5 cos(− 45 ◦)+j5 sin(− 45 ◦)= 3. 536 −j 3. 5364 ∠ 120 ◦=4( cos 120◦+jsin 120◦)=4 cos 120◦+j4 sin 120◦
=− 2. 000 +j 3. 464Hence 2∠ 30 ◦+ 5 ∠− 45 ◦− 4 ∠ 120 ◦=(1. 732 +j 1 .000)+(3. 536 −j 3 .536)−(− 2. 000 +j 3 .464)= 7. 268 −j 6 .000, which lies in the
fourth quadrant=√
[(7.268)^2 +(6.000)^2 ]∠tan−^1(
− 6. 000
7. 268)= 9. 425 ∠− 39. 54 ◦or 9. 425 ∠− 39 ◦ 32 ′Now try the following exercise.Exercise 103 Further problems on polar
form- Determine the modulus and argument of
(a) 2+j4 (b)− 5 −j2 (c)j(2−j).
⎡
⎢
⎣(a) 4.472, 63◦ 26 ′
(b) 5.385,− 158 ◦ 12 ′
(c) 2.236, 63◦ 26 ′⎤⎥
⎦In Problems 2 and 3 express the given Cartesian
complex numbers in polar form, leaving answers
in surd form.- (a) 2+j3 (b)−4 (c)− 6 +j
[
(a)
√
13 ∠ 56 ◦ 19 ′ (b) 4∠ 180 ◦(c)√
37 ∠ 170 ◦ 32 ′]- (a)−j3 (b) (− 2 +j)^3 (c)j^3 (1−j)
[
(a) 3∠− 90 ◦ (b)
√
125 ∠ 100 ◦ 18 ′(c)√
2 ∠− 135 ◦]