Higher Engineering Mathematics

(Greg DeLong) #1
E

Complex numbers


24


De Moivre’s theorem


24.1 Introduction


From multiplication of complex numbers in polar
form,


(r∠θ)×(r∠θ)=r^2 ∠ 2 θ

Similarly, (r∠θ)×(r∠θ)×(r∠θ)=r^3 ∠ 3 θ, and so on.


In general,De Moivre’s theoremstates:


[r∠θ]n=rn∠nθ

The theorem is true for all positive, negative and frac-
tional values ofn. The theorem is used to determine
powers and roots of complex numbers.


24.2 Powers of complex numbers


For example [3∠ 20 ◦]^4 = 34 ∠(4× 20 ◦)= 81 ∠ 80 ◦by
De Moivre’s theorem.


Problem 1. Determine, in polar form
(a) [2∠ 35 ◦]^5 (b) (− 2 +j3)^6.

(a) [2∠ 35 ◦]^5 = 25 ∠(5× 35 ◦),

from De Moivre’s theorem

= 32 ∠ 175 ◦

(b) (− 2 +j3)=



[(−2)^2 +(3)^2 ]∠tan−^1

3
− 2

=


13 ∠ 123. 69 ◦, since− 2 +j 3
lies in the second quadrant

(− 2 +j3)^6 =[


13 ∠ 123. 69 ◦]^6

=(


13)^6 ∠(6× 123. 69 ◦),
by De Moivre’s theorem
= 2197 ∠ 742. 14 ◦
= 2197 ∠ 382. 14 ◦(since 742. 14
≡ 742. 14 ◦− 360 ◦= 382. 14 ◦)

= 2197 ∠ 22. 14 ◦(since 382. 14 ◦

≡ 382. 14 ◦− 360 ◦= 22. 14 ◦)

or 2197 ∠ 22 ◦ 8 ′

Problem 2. Determine the value of (− 7 +j5)^4 ,
expressing the result in polar and rectangular
forms.

(− 7 +j5)=


[(−7)^2 + 52 ]∠tan−^1

5
− 7

=


74 ∠ 144. 46 ◦
(Note, by considering the Argand diagram,− 7 +j 5
must represent an angle in the second quadrant and
notin the fourth quadrant.)

Applying De Moivre’s theorem:

(− 7 +j5)^4 =[


74 ∠ 144. 46 ◦]^4

=


744 ∠ 4 × 144. 46 ◦

= 5476 ∠ 577. 84 ◦

= 5476 ∠ 217. 84 ◦or

5476 ∠ 217 ◦ 15 ′in polar form
Sincer∠θ=rcosθ+jrsinθ,

5476 ∠ 217. 84 ◦=5476 cos 217. 84 ◦

+j5476 sin 217. 84 ◦

=− 4325 −j 3359

i.e. (− 7 +j5)^4 =− 4325 −j 3359

in rectangular form

Now try the following exercise.

Exercise 105 Further problems on powers
of complex numbers


  1. Determine in polar form (a) [1. 5 ∠ 15 ◦]^5
    (b) (1+j2)^6.
    [(a) 7. 594 ∠ 75 ◦ (b) 125∠ 20 ◦ 37 ′]

Free download pdf