268 MATRICES AND DETERMINANTS
Problem 2. Subtract
(a)
(
− 30
7 − 4
)
from
(
2 − 1
− 74
)
and
(b)
(
27 − 5
−21 0
63 4
)
from
(
31 − 4
43 1
14 − 3
)
To find matrixAminus matrixB, the elements of
Bare taken from the corresponding elements ofA.
Thus:
(a)
(
2 − 1
− 74
)
−
(
− 30
7 − 4
)
=
(
2 −(−3) − 1 − 0
− 7 − 74 −(−4)
)
=
(
5 − 1
− 14 8
)
(b)
(
31 − 4
43 1
14 − 3
)
−
(
27 − 5
−21 0
63 4
)
=
(
3 − 21 − 7 − 4 −(−5)
4 −(−2) 3− 11 − 0
1 − 64 − 3 − 3 − 4
)
=
(
1 − 61
621
− 51 − 7
)
Problem 3. If
A=
(
− 30
7 − 4
)
,B=
(
2 − 1
− 74
)
and
C=
(
10
− 2 − 4
)
findA+B−C.
A+B=
(
− 1 − 1
00
)
(from Problem 1)
Hence,A+B−C=
(
− 1 − 1
00
)
−
(
10
− 2 − 4
)
=
(
− 1 − 1 − 1 − 0
0 −(−2) 0 −(−4)
)
=
(
− 2 − 1
24
)
AlternativelyA+B−C
=
(
− 30
7 − 4
)
+
(
2 − 1
− 74
)
−
(
10
− 2 − 4
)
=
(
− 3 + 2 − 10 +(−1)− 0
7 +(−7)−(−2) − 4 + 4 −(−4)
)
=
(
− 2 − 1
24
)
as obtained previously
(iii) Multiplication
When a matrix is multiplied by a number, called
scalar multiplication, a single matrix results in
which each element of the original matrix has been
multiplied by the number.
Problem 4. IfA=
(
− 30
7 − 4
)
,
B=
(
2 − 1
− 74
)
andC=
(
10
− 2 − 4
)
find
2 A− 3 B+ 4 C.
For scalar multiplication, each element is multiplied
by the scalar quantity, hence
2 A= 2
(
− 30
7 − 4
)
=
(
− 60
14 − 8
)
3 B= 3
(
2 − 1
− 74
)
=
(
6 − 3
− 21 12
)
and 4 C= 4
(
10
− 2 − 4
)
=
(
40
− 8 − 16
)
Hence 2A− 3 B+ 4 C
=
(
− 60
14 − 8
)
−
(
6 − 3
−21 12
)
+
(
40
− 8 − 16
)
=
(
− 6 − 6 + 40 −(−3)+ 0
14 −(−21)+(−8) − 8 − 12 +(−16)
)
=
(
− 83
27 − 36
)
When a matrixAis multiplied by another matrixB,a
single matrix results in which elements are obtained
from the sum of the products of the corresponding
rows ofAand the corresponding columns ofB.
Two matricesAandBmay be multiplied together,
provided the number of elements in the rows of
matrixAare equal to the number of elements in the
columns of matrixB. In general terms, when multi-
plying a matrix of dimensions (mbyn) by a matrix of
dimensions (nbyr), the resulting matrix has dimen-
sions (mbyr).Thusa2by3matrix multiplied by a
3 by 1 matrix gives a matrix of dimensions 2 by 1.