SOME APPLICATIONS OF DIFFERENTIATION 311G
Problem 23. Determine the equations of thetangent and normal to the curvey=x^3
5at thepoint(
−1,−1
5)Gradientmof curvey=
x^3
5is given bym=dy
dx=3 x^2
5At the point
(
−1,−^15)
,x=−1 andm=3(−1)^2
5=3
5
Equation of the tangentis:
y−y 1 =m(x−x 1 )i.e. y−
(
−1
5)
=3
5(x−(−1))i.e. y+
1
5=3
5(x+1)or 5 y+ 1 = 3 x+ 3
or 5 y− 3 x= 2
Equation of the normal is:
y−y 1 =−1
m(x−x 1 )i.e. y−
(
−1
5)
=− 1
(3/5)(x−(−1))i.e. y+
1
5=−5
3(x+1)i.e. y+
1
5=−5
3x−5
3Multiplying each term by 15 gives:
15 y+ 3 =− 25 x− 25Henceequation of the normalis:
15 y+ 25 x+ 28 = 0Now try the following exercise.
Exercise 126 Further problems on tangents
and normalsFor the curves in problems 1 to 5, at the points
given, find (a) the equation of the tangent, and
(b) the equation of the normal.1.y= 2 x^2 at the point (1, 2)[
(a)y= 4 x− 2
(b) 4y+x= 9]2.y= 3 x^2 − 2 xat the point (2, 8)
[
(a)y= 10 x− 12(b) 10y+x= 82]3.y=x^3
2at the point(
−1,−1
2)[
(a) y=^32 x+ 1(b) 6y+ 4 x+ 7 = 0]4.y= 1 +x−x^2 at the point (−2,−5)
[
(a) y= 5 x+ 5(b) 5y+x+ 27 = 0]5.θ=1
tat the point(
3,1
3)[
(a) 9θ+t= 6
(b)θ= 9 t− 2623 or 3θ= 27 t− 80]28.6 Small changes
Ifyis a function ofx, i.e.y=f(x), and the approxi-
mate change inycorresponding to a small change
δxinxis required, then:δy
δx≈dy
dxandδy≈dy
dx·δx or δy≈f′(x)·δxProblem 24. Giveny= 4 x^2 −x, determine the
approximate change inyifxchanges from 1 to
1.02.Sincey= 4 x^2 −x, thendy
dx= 8 x− 1Approximate change iny,δy≈dy
dx·δx≈(8x−1)δxWhenx=1 andδx= 0 .02,δy≈[8(1)−1](0.02)
≈ 0. 14