Differential calculus
32
Differentiation of hyperbolic functions
32.1 Standard differential coefficients of
hyperbolic functionsFrom Chapter 5,d
dx(sinhx)=d
dx(
ex−e−x
2)
=[
ex−(−e−x)
2]=(
ex+e−x
2)
=coshxIf y=sinhax, where ‘a’ is a constant, then
dy
dx=acoshaxd
dx( coshx)=d
dx(
ex+e−x
2)
=[
ex+(−e−x)
2]=(
ex−e−x
2)
=sinhxIf y=coshax, where ‘a’ is a constant, then
dy
dx=asinhaxUsing the quotient rule of differentiation the deriva-
tives of tanhx, sechx, cosechxand cothxmay be
determined using the above results.Problem 1. Determine the differential coeffi-
cient of: (a) thx(b) sechx.(a)d
dx(thx)=d
dx(
shx
chx)=(chx)(chx)−(shx)(shx)
ch^2 x
using the quotient rule=ch^2 x−sh^2 x
ch^2 x=1
ch^2 x=sech^2 x(b)d
dx(sechx)=d
dx(
1
chx)=(chx)(0)−(1)(shx)
ch^2 x=−shx
ch^2 x=−(
1
chx)(
shx
chx)=−sechxthxProblem 2. Determinedy
dθgiven
(a)y=cosechθ (b)y=cothθ.(a)d
dθ(cosecθ)=d
dθ(
1
shθ)=(shθ)(0)−(1)(chθ)
sh^2 θ=−chθ
sh^2 θ=−(
1
shθ)(
chθ
shθ)=−cosechθcothθ(b)d
dθ( cothθ)=d
dθ(
chθ
shθ)=(shθ)(shθ)−(chθ)(chθ)
sh^2 θ=sh^2 θ−ch^2 θ
sh^2 θ=−(ch^2 θ−sh^2 θ)
sh^2 θ=− 1
sh^2 θ=−cosech^2 θSummary of differential coefficientsyorf(x)dy
dxorf′(x)sinhax acoshax
coshax asinhax
tanhax asech^2 ax
sechax −asechaxtanhax
cosechax −acosechaxcothax
cothax −acosech^2 ax