DIFFERENTIATION OF INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 333G
y
3 π/2π/2π−π/2−π
− 3 π/2+ 1 xBy = sin^1 xA− 1(a)y
3 π/2π/2π0−π− 3 π/2− 1 + 1 x(b)y = cos^1 x−π/2yπ/20−π/2y = tan^1 x(c)yπ0−π3 π/2π/2−π/2− 3 π/2y = sec^1 x− 1 + 1 x(d)yπ0−π3 π/2π/2−π/2− 3 π/2y = cosec^1 x+ 1 x(e)yy = cot^1 xπ0πx(f)0 x− 1
−π/2π/2CDFigure 33.1
0123 x13
2− 3 −^2 −^1
− 1
− 2
− 3y
y = sinh^1 x− 2 − 10 1 23
− 1
− 2
− 3123yxy = cosh^1 x1230
− 1
− 2
− 31 xy
y = sech^1 x y = cosech^1 xxy0y = coth^1 xxy− 10 + 1(a) (b) (c)(d) (e) (f)0 xy
y = tanh^1 x− 1 +^1Figure 33.2