336 DIFFERENTIAL CALCULUS
Problem 7. Differentiatey=xcosec−^1 x.
Using the product rule:
dy
dx
=(x)
[
− 1
x
√
x^2 − 1
]
+(cosec−^1 x) (1)
from Table 33.1(v)
=
− 1
√
x^2 − 1
+cosec−^1 x
Problem 8. Show that if
y=tan−^1
(
sint
cost− 1
)
then
dy
dt
=
1
2
If f(t)=
(
sint
cost− 1
)
then f′(t)=
(cost−1)(cost)−(sint)(−sint)
(cost−1)^2
=
cos^2 t−cost+sin^2 t
(cost−1)^2
=
1 −cost
(cost−1)^2
since sin^2 t+cos^2 t= 1
=
−(cost−1)
(cost−1)^2
=
− 1
cost− 1
Using Table 33.1(iii), when
y=tan−^1
(
sint
cost− 1
)
then
dy
dt
=
− 1
cost− 1
1 +
(
sint
cost− 1
) 2
=
− 1
cost− 1
(cost−1)^2 +(sint)^2
(cost−1)^2
=
(
− 1
cost− 1
)(
(cost−1)^2
cos^2 t−2 cost+ 1 +sin^2 t
)
=
−(cost−1)
2 −2 cost
=
1 −cost
2(1−cost)
=
1
2
Now try the following exercise.
Exercise 136 Further problems on
differentiating inverse trigonometric
functions
In Problems 1 to 6, differentiate with respect to
the variable.
- (a) sin−^14 x(b) sin−^1
x
2
[
(a)
4
√
1 − 16 x^2
(b)
1
√
4 −x^2
]
- (a) cos−^13 x (b)
2
3
cos−^1
x
3
[
(a)
− 3
√
1 − 9 x^2
(b)
− 2
3
√
9 −x^2
]
- (a) 3 tan−^12 x (b)
1
2
tan−^1
√
x
[
(a)
6
1 + 4 x^2
(b)
1
4
√
x(1+x)
]
- (a) 2 sec−^12 t (b) sec−^1
3
4
x
[
(a)
2
t
√
4 t^2 − 1
(b)
4
x
√
9 x^2 − 16
]
- (a)
5
2
cosec−^1
θ
2
(b) cosec−^1 x^2
[
(a)
− 5
θ
√
θ^2 − 4
(b)
− 2
x
√
x^4 − 1
]
- (a) 3 cot−^12 t (b) cot−^1
√
θ^2 − 1
[
(a)
− 6
1 + 4 t^2
(b)
− 1
θ
√
θ^2 − 1
]
- Show that the differential coefficient of
tan−^1
x
1 −x^2
is
1 +x^2
1 −x^2 +x^4
In Problems 8 to 11 differentiate with respect to
the variable.
- (a) 2xsin−^13 x(b)t^2 sec−^12 t
⎡
⎢
⎣
(a)
6 x
√
1 − 9 x^2
+2 sin−^13 x
(b)
t
√
4 t^2 − 1
+ 2 tsec−^12 t
⎤
⎥
⎦