336 DIFFERENTIAL CALCULUS
Problem 7. Differentiatey=xcosec−^1 x.Using the product rule:
dy
dx=(x)[
− 1
x√
x^2 − 1]
+(cosec−^1 x) (1)from Table 33.1(v)=− 1
√
x^2 − 1+cosec−^1 xProblem 8. Show that ify=tan−^1(
sint
cost− 1)
thendy
dt=1
2If f(t)=
(
sint
cost− 1)then f′(t)=
(cost−1)(cost)−(sint)(−sint)
(cost−1)^2=cos^2 t−cost+sin^2 t
(cost−1)^2=1 −cost
(cost−1)^2since sin^2 t+cos^2 t= 1=−(cost−1)
(cost−1)^2=− 1
cost− 1Using Table 33.1(iii), when
y=tan−^1(
sint
cost− 1)thendy
dt=− 1
cost− 11 +(
sint
cost− 1) 2=− 1
cost− 1
(cost−1)^2 +(sint)^2
(cost−1)^2=(
− 1
cost− 1)(
(cost−1)^2
cos^2 t−2 cost+ 1 +sin^2 t)=−(cost−1)
2 −2 cost=1 −cost
2(1−cost)=1
2Now try the following exercise.Exercise 136 Further problems on
differentiating inverse trigonometric
functionsIn Problems 1 to 6, differentiate with respect to
the variable.- (a) sin−^14 x(b) sin−^1
x
2
[
(a)4
√
1 − 16 x^2(b)1
√
4 −x^2]- (a) cos−^13 x (b)
2
3cos−^1x
3
[
(a)− 3
√
1 − 9 x^2(b)− 2
3√
9 −x^2]- (a) 3 tan−^12 x (b)
1
2tan−^1√
x
[
(a)6
1 + 4 x^2(b)1
4√
x(1+x)]- (a) 2 sec−^12 t (b) sec−^1
3
4x
[
(a)2
t√
4 t^2 − 1(b)4
x√
9 x^2 − 16]- (a)
5
2cosec−^1θ
2(b) cosec−^1 x^2
[
(a)− 5
θ√
θ^2 − 4(b)− 2
x√
x^4 − 1]- (a) 3 cot−^12 t (b) cot−^1
√
θ^2 − 1
[
(a)− 6
1 + 4 t^2(b)− 1
θ√
θ^2 − 1]- Show that the differential coefficient of
tan−^1x
1 −x^2is1 +x^2
1 −x^2 +x^4In Problems 8 to 11 differentiate with respect to
the variable.- (a) 2xsin−^13 x(b)t^2 sec−^12 t
⎡
⎢
⎣(a)6 x
√
1 − 9 x^2+2 sin−^13 x(b)t
√
4 t^2 − 1+ 2 tsec−^12 t⎤⎥
⎦