Higher Engineering Mathematics

(Greg DeLong) #1

336 DIFFERENTIAL CALCULUS


Problem 7. Differentiatey=xcosec−^1 x.

Using the product rule:


dy
dx

=(x)

[
− 1
x


x^2 − 1

]
+(cosec−^1 x) (1)

from Table 33.1(v)

=

− 1

x^2 − 1

+cosec−^1 x

Problem 8. Show that if

y=tan−^1

(
sint
cost− 1

)
then

dy
dt

=

1
2

If f(t)=


(
sint
cost− 1

)

then f′(t)=


(cost−1)(cost)−(sint)(−sint)
(cost−1)^2

=

cos^2 t−cost+sin^2 t
(cost−1)^2

=

1 −cost
(cost−1)^2

since sin^2 t+cos^2 t= 1

=

−(cost−1)
(cost−1)^2

=

− 1
cost− 1

Using Table 33.1(iii), when


y=tan−^1

(
sint
cost− 1

)

then

dy
dt

=

− 1
cost− 1

1 +

(
sint
cost− 1

) 2

=

− 1
cost− 1
(cost−1)^2 +(sint)^2
(cost−1)^2

=

(
− 1
cost− 1

)(
(cost−1)^2
cos^2 t−2 cost+ 1 +sin^2 t

)

=

−(cost−1)
2 −2 cost

=

1 −cost
2(1−cost)

=

1
2

Now try the following exercise.

Exercise 136 Further problems on
differentiating inverse trigonometric
functions

In Problems 1 to 6, differentiate with respect to
the variable.


  1. (a) sin−^14 x(b) sin−^1


x
2
[
(a)

4

1 − 16 x^2

(b)

1

4 −x^2

]


  1. (a) cos−^13 x (b)


2
3

cos−^1

x
3
[
(a)

− 3

1 − 9 x^2

(b)

− 2
3


9 −x^2

]


  1. (a) 3 tan−^12 x (b)


1
2

tan−^1


x
[
(a)

6
1 + 4 x^2

(b)

1
4


x(1+x)

]


  1. (a) 2 sec−^12 t (b) sec−^1


3
4

x
[
(a)

2
t


4 t^2 − 1

(b)

4
x


9 x^2 − 16

]


  1. (a)


5
2

cosec−^1

θ
2

(b) cosec−^1 x^2
[
(a)

− 5
θ


θ^2 − 4

(b)

− 2
x


x^4 − 1

]


  1. (a) 3 cot−^12 t (b) cot−^1



θ^2 − 1
[
(a)

− 6
1 + 4 t^2

(b)

− 1
θ


θ^2 − 1

]


  1. Show that the differential coefficient of


tan−^1

x
1 −x^2

is

1 +x^2
1 −x^2 +x^4

In Problems 8 to 11 differentiate with respect to
the variable.


  1. (a) 2xsin−^13 x(b)t^2 sec−^12 t




(a)

6 x

1 − 9 x^2

+2 sin−^13 x

(b)

t

4 t^2 − 1

+ 2 tsec−^12 t



Free download pdf