338 DIFFERENTIAL CALCULUSThus,
x
a=e^2 y− 1
e^2 y+ 1
from which, x(e^2 y+1)=a(e^2 y−1)Hencex+a=ae^2 y−xe^2 y=e^2 y(a−x)from which e^2 y=(
a+x
a−x)Taking Napierian logarithms of both sides gives:
2 y=ln(
a+x
a−x)and y=1
2ln(
a+x
a−x)Hence,tanh−^1x
a=1
2ln(
a+x
a−x)Substitutingx=3 anda=5 gives:tanh−^13
5=1
2ln(
5 + 3
5 − 3)
=1
2ln 4=0.6931, correct to 4 decimal placesProblem 11. Prove thatcosh−^1x
a=ln{
x+√
x^2 −a^2
a}and hence evaluate cosh−^1 1.4 correct to
4 decimal places.Ify=cosh−^1x
athenx
a=cosyey=coshy+sinhy=coshy±√
cosh^2 y− 1=x
a±√[
(xa) 2
− 1]
=x
a±√
x^2 −a^2
a=x±√
x^2 −a^2
aTaking Napierian logarithms of both sides gives:
y=ln{
x±√
x^2 −a^2
a}Thus, assuming the principal value,
cosh−^1x
a=ln{
x+√
x^2 −a^2
a}cosh−^11. 4 =cosh−^114
10=cosh−^17
5
In the equation for cosh−^1x
a, letx=7 anda= 5Then cosh−^17
5=ln{
7 +√
72 − 52
5}=ln 2. 3798 =0.8670,
correct to 4 decimal placesNow try the following exercise.Exercise 137 Further problems on logarith-
mic forms of the inverse hyperbolic functionsIn Problems 1 to 3 use logarithmic equivalents of
inverse hyperbolic functions to evaluate correct
to 4 decimal places.- (a) sinh−^1
1
2(b) sinh−^1 4 (c) sinh−^1 0.9[(a) 0.4812 (b) 2.0947 (c) 0.8089]- (a) cosh−^1
5
4(b) cosh−^1 3 (c) cosh−^1 4.3[(a) 0.6931 (b) 1.7627 (c) 2.1380]- (a) tanh−^1
1
4(b) tanh−^15
8(c) tanh−^1 0.7[(a) 0.2554 (b) 0.7332 (c) 0.8673]33.4 Differentiation of inverse
hyperbolic functionsIfy=sinh−^1x
athenx
a=sinhyandx=asinhy
dx
dy=acoshy(from Chapter 32).Also cosh^2 y−sinh^2 y=1, from which,coshy=√
1 +sinh^2 y=√[1 +(xa) 2 ]=√
a^2 +x^2
aHencedx
dy=acoshy=a√
a^2 +x^2
a=√
a^2 +x^2Thendy
dx=1
dx
dy=1
√
a^2 +x^2