Higher Engineering Mathematics

(Greg DeLong) #1

340 DIFFERENTIAL CALCULUS


Problem 14. Show that

d
dx

[
tanh−^1

x
a

]
=
a
a^2 −x^2

and hence determine the differential

coefficient of tanh−^1

4 x
3

Ify=tanh−^1


x
a

then

x
a

=tanhyandx=atanhy

dx
dy

=asech^2 y=a(1−tanh^2 y), since

1 −sech^2 y=tanh^2 y

=a

[
1 −

(x

a

) 2 ]
=a

(
a^2 −x^2
a^2

)
=

a^2 −x^2
a

Hence


dy
dx

=

1
dx
dy

=

a
a^2 −x^2

Comparing tanh−^1


4 x
3

with tanh−^1

x
a

shows that

a=


3
4

Hence


d
dx

[
tanh−^1

4 x
3

]
=

3
4
(
3
4

) 2
−x^2

=

3
4
9
16

−x^2

=

3
4
9 − 16 x^2
16

=

3
4

·

16
(9− 16 x^2 )

=

12
9 − 16 x^2

Problem 15. Differentiate cosech−^1 (sinhθ).

From Table 33.2(v),


d
dx

[cosech−^1 f(x)]=

−f′(x)

f(x)


[f(x)]^2 + 1

Hence


d

[cosech−^1 (sinhθ)]

=

−coshθ

sinhθ


[sinh^2 θ+1]

=

−coshθ

sinhθ


cosh^2 θ

since cosh^2 θ−sinh^2 θ= 1

=

−coshθ
sinhθcoshθ

=

− 1
sinhθ

=−cosechθ

Problem 16. Find the differential coefficient of
y=sech−^1 (2x−1).

From Table 33.2(iv),

d
dx

[sech−^1 f(x)]=

−f′(x)

f(x)


1 −[f(x)]^2

Hence,

d
dx

[sech−^1 (2x−1)]

=

− 2

(2x−1)


[1−(2x−1)^2 ]

=

− 2

(2x−1)


[1−(4x^2 − 4 x+1)]

=

− 2

(2x−1)


(4x− 4 x^2 )

=

− 2
(2x−1)


[4x(1−x)]

=

− 2
(2x−1)2


[x(1−x)]

=

− 1
( 2 x− 1 )


[x(1−x)]

Problem 17. Show that
d
dx

[coth−^1 (sinx)]=secx.

From Table 33.2(vi),

d
dx

[coth−^1 f(x)]=

f′(x)
1 −[f(x)]^2

Hence

d
dx

[coth−^1 (sinx)]=

cosx
[1−(sinx)^2 ]

=

cosx
cos^2 x

since cos^2 x+sin^2 x= 1

=

1
cosx

=secx

Problem 18. Differentiate
y=(x^2 −1) tanh−^1 x.

Using the product rule,

dy
dx

=(x^2 −1)

(
1
1 −x^2

)
+( tanh−^1 x)(2x)

=

−(1−x^2 )
(1−x^2 )

+ 2 xtanh−^1 x= 2 xtanh−^1 x− 1
Free download pdf