340 DIFFERENTIAL CALCULUS
Problem 14. Show that
d
dx
[
tanh−^1
x
a
]
=
a
a^2 −x^2
and hence determine the differential
coefficient of tanh−^1
4 x
3
Ify=tanh−^1
x
a
then
x
a
=tanhyandx=atanhy
dx
dy
=asech^2 y=a(1−tanh^2 y), since
1 −sech^2 y=tanh^2 y
=a
[
1 −
(x
a
) 2 ]
=a
(
a^2 −x^2
a^2
)
=
a^2 −x^2
a
Hence
dy
dx
=
1
dx
dy
=
a
a^2 −x^2
Comparing tanh−^1
4 x
3
with tanh−^1
x
a
shows that
a=
3
4
Hence
d
dx
[
tanh−^1
4 x
3
]
=
3
4
(
3
4
) 2
−x^2
=
3
4
9
16
−x^2
=
3
4
9 − 16 x^2
16
=
3
4
·
16
(9− 16 x^2 )
=
12
9 − 16 x^2
Problem 15. Differentiate cosech−^1 (sinhθ).
From Table 33.2(v),
d
dx
[cosech−^1 f(x)]=
−f′(x)
f(x)
√
[f(x)]^2 + 1
Hence
d
dθ
[cosech−^1 (sinhθ)]
=
−coshθ
sinhθ
√
[sinh^2 θ+1]
=
−coshθ
sinhθ
√
cosh^2 θ
since cosh^2 θ−sinh^2 θ= 1
=
−coshθ
sinhθcoshθ
=
− 1
sinhθ
=−cosechθ
Problem 16. Find the differential coefficient of
y=sech−^1 (2x−1).
From Table 33.2(iv),
d
dx
[sech−^1 f(x)]=
−f′(x)
f(x)
√
1 −[f(x)]^2
Hence,
d
dx
[sech−^1 (2x−1)]
=
− 2
(2x−1)
√
[1−(2x−1)^2 ]
=
− 2
(2x−1)
√
[1−(4x^2 − 4 x+1)]
=
− 2
(2x−1)
√
(4x− 4 x^2 )
=
− 2
(2x−1)
√
[4x(1−x)]
=
− 2
(2x−1)2
√
[x(1−x)]
=
− 1
( 2 x− 1 )
√
[x(1−x)]
Problem 17. Show that
d
dx
[coth−^1 (sinx)]=secx.
From Table 33.2(vi),
d
dx
[coth−^1 f(x)]=
f′(x)
1 −[f(x)]^2
Hence
d
dx
[coth−^1 (sinx)]=
cosx
[1−(sinx)^2 ]
=
cosx
cos^2 x
since cos^2 x+sin^2 x= 1
=
1
cosx
=secx
Problem 18. Differentiate
y=(x^2 −1) tanh−^1 x.
Using the product rule,
dy
dx
=(x^2 −1)
(
1
1 −x^2
)
+( tanh−^1 x)(2x)
=
−(1−x^2 )
(1−x^2 )
+ 2 xtanh−^1 x= 2 xtanh−^1 x− 1