Higher Engineering Mathematics

(Greg DeLong) #1
INEQUALITIES 17

A

Summarizing, t^2 − 2 t− 8 <0 is satisfied when
− 2 <t< 4


Problem 17. Solve the inequality:
x^2 + 6 x+ 3 < 0

x^2 + 6 x+3 does not factorize; completing the
square gives:


x^2 + 6 x+ 3 ≡(x+ 3 )^2 + 3 − 32

≡(x+ 3 )^2 − 6

The inequality thus becomes:(x+ 3 )^2 − 6 <0or


(x+ 3 )^2 < 6


From equation (2),−



6 <(x+3)<


6

from which, (−



6 −3)<x<(


6 −3)

Hence,x^2 + 6 x+ 3 <0 is satisfied when
−5.45<x<−0.55correct to 2 decimal places.


Problem 18. Solve the inequality:
y^2 − 8 y− 10 ≥ 0

y^2 − 8 y−10 does not factorize; completing the
square gives:


y^2 − 8 y− 10 ≡(y−4)^2 − 10 − 42
≡(y−4)^2 − 26

The inequality thus becomes:(y− 4 )^2 − 26 ≥0or
(y− 4 )^2 ≥ 26


From equation (1), (y−4)≥


26 or (y−4)≤−


26

from which, y≥ 4 +


26 ory≤ 4 −


26

Hence,y^2 − 8 y− 10 ≥0 is satisfied wheny≥9.10
ory≤−1.10correct to 2 decimal places.

Now try the following exercise.

Exercise 12 Further problems on quadratic
inequalities

Solve the following inequalities:

1.x^2 −x− 6 >0[x>3orx<−2]

2.t^2 + 2 t− 8 ≤0[− 4 ≤t≤2]


  1. 2x^2 + 3 x− 2 < 0


[
− 2 <x<

1
2

]

4.y^2 −y− 20 ≥0[y≥5ory≤−4]

5.z^2 + 4 z+ 4 ≤4[− 4 ≤z≤0]

6.x^2 + 6 x+ 6 ≤ 0
[(−


3 −3)≤x≤(


3 −3)]

7.t^2 − 4 t− 7 ≥ 0
[t≥(


11 +2) ort≤(2−


11)]

8.k^2 +k− 3 ≥ 0
[

k≥

(√
13
4


1
2

)

ork≤

(



13
4


1
2

)]
Free download pdf