Higher Engineering Mathematics

(Greg DeLong) #1

342 DIFFERENTIAL CALCULUS



  1. (a) sech−^1 (x−1) (b) tanh−^1 (tanhx)
    [
    (a)


− 1
(x−1)


[x(2−x)]

(b) 1

]


  1. (a) cosh−^1


(
t
t− 1

)
(b) coth−^1 (cosx)

[
(a)

− 1
(t−1)


(2t−1)

(b)−cosecx

]


  1. (a)θsinh−^1 θ (b)



xcosh−^1 x





(a)

θ

(θ^2 +1)

+sinh−^1 θ

(b)


x

(x^2 −1)

+

cosh−^1 x
2


x







  1. (a)


2 sec h−^1


t
t^2

(b)

tan h−^1 x
(1−x^2 )
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
(a)

− 1
t^3

{
1

(1−t)

+4 sech−^1


t

}

(b)

1 + 2 xtanh−^1 x
(1−x^2 )^2

⎤ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Show that


d
dx

[xcosh−^1 (coshx)]= 2 x

In Problems 13 to 15, determine the given
integrals


  1. (a)



1

(x^2 +9)

dx

(b)


3

(4x^2 +25)

dx

[
(a) sinh−^1

x
3

+c(b)

3
2

sinh−^1

2 x
5

+c

]


  1. (a)



1

(x^2 −16)

dx

(b)


1

(t^2 −5)

dt

[
(a) cosh−^1

x
4

+c(b) cosh−^1

t

5

+c

]


  1. (a)





(36+θ^2 )

(b)


3
(16− 2 x^2 )

dx





(a)

1
6

tan−^1

θ
6

+c

(b)

3

2


8

tanh−^1

x

8

+c




Free download pdf