Higher Engineering Mathematics

(Greg DeLong) #1
PARTIAL DIFFERENTIATION 347

G

[
It is noted that

∂^2 z
∂x∂y

=

∂^2 z
∂y∂x

]

Problem 8. Show that when z=e−tsinθ,

(a)

∂^2 z
∂t^2

=−

∂^2 z
∂θ^2

, and (b)

∂^2 z
∂t∂θ

=

∂^2 z
∂θ∂t

(a)


∂z
∂t

=−e−tsinθand

∂^2 z
∂t^2

=e−tsinθ

∂z
∂θ

= e−tcosθand

∂^2 z
∂θ^2

=−e−tsinθ

Hence

∂^2 z
∂t^2

=−

∂^2 z
∂θ^2

(b)


∂^2 z
∂t∂θ

=


∂t

(
∂z
∂θ

)
=


∂t

(e−tcosθ)

=−e−tcosθ
∂^2 z
∂θ∂t

=


∂θ

(
∂z
∂t

)
=


∂θ

(−e−tsinθ)

=−e−tcosθ

Hence

∂^2 z
∂t∂θ

=

∂^2 z
∂θ∂t

Problem 9. Show that if z=

x
y

lny, then

(a)

∂z
∂y

=x

∂^2 z
∂y∂x

and (b) evaluate

∂^2 z
∂y^2

when

x=−3 andy=1.

(a) To find


∂z
∂x

,yis kept constant.

Hence

∂z
∂x

=

(
1
y

lny

)
d
dx

(x)=

1
y

lny

To find

∂z
∂y

,xis kept constant.

Hence
∂z
∂y

=(x)

d
dy

(
lny
y

)

=(x)


⎪⎪

⎪⎪

(y)

(
1
y

)
−(lny)(1)

y^2


⎪⎪

⎪⎪

using the quotient rule

=x

(
1 −lny
y^2

)
=

x
y^2

(1−lny)

∂^2 z
∂y∂x

=


∂y

(
∂z
∂x

)
=


∂y

(
lny
y

)

=

(y)

(
1
y

)
−(lny)(1)

y^2
using the quotient rule

=

1
y^2

(1−lny)

Hencex

∂^2 z
∂y∂x

=

x
y^2

(1−lny)=

∂z
∂y

(b) ∂^2 z
∂y^2

=


∂y

(
∂z
∂y

)
=


∂y

{
x
y^2

(1−lny)

}

=(x)

d
dy

(
1 −lny
y^2

)

=(x)


⎪⎪

⎪⎪

(y^2 )

(

1
y

)
−(1−lny)(2y)

y^4


⎪⎪

⎪⎪

using the quotient rule

=

x
y^4

[−y− 2 y+ 2 ylny]

=

xy
y^4

[− 3 +2lny]=

x
y^3

(2 lny−3)

Whenx=−3 andy=1,

∂^2 z
∂y^2

=

(−3)
(1)^3

(2ln 1−3)=(−3)(−3)= 9

Now try the following exercise.

Exercise 140 Further problems on second
order partial derivatives

In Problems 1 to 4, find (a)

∂^2 z
∂x^2

(b)

∂^2 z
∂y^2

(c)

∂^2 z
∂x∂y

(d)

∂^2 z
∂y∂x

1.z=(2x− 3 y)^2

[
(a) 8 (b) 18
(c)−12 (d) − 12

]
Free download pdf