G
Differential calculus
35
Total differential, rates of change and
small changes
35.1 Total differential
In Chapter 34, partial differentiation is introduced for
the case where only one variable changes at a time,
the other variables being kept constant. In practice,
variables may all be changing at the same time.
Ifz=f(u,v,w,...), then thetotal differential,
dz, is given by the sum of the separate partial
differentials ofz,
i.e. dz=
∂z
∂udu+∂z
∂vdv+∂z
∂wdw+... (1)Problem 1. If z=f(x,y) and z=x^2 y^3 +
2 x
y+1, determine the total differential, dz.The total differential is the sum of the partial
differentials,
i.e. dz=∂z
∂xdx+∂z
∂ydy∂z
∂x= 2 xy^3 +2
y(i.e.yis kept constant)∂z
∂y= 3 x^2 y^22 x
y^2(i.e.xis kept constant)Hence dz=
(
2 xy^3 +2
y)
dx+(
3 x^2 y^2 −2 x
y^2)
dyProblem 2. If z=f(u,v,w) and z= 3 u^2 −
2 v+ 4 w^3 v^2 find the total differential, dz.The total differential
dz=∂z
∂udu+∂z
∂vdv+∂z
∂wdw∂z
∂u= 6 u(i.e.vandware kept constant)∂z
∂v=− 2 + 8 w^3 v(i.e.uandware kept constant)
∂z
∂w= 12 w^2 v^2 (i.e.uandvare kept constant)Hencedz= 6 udu+(8vw^3 −2) dv+(12v^2 w^2 )dwProblem 3. The pressurep, volumeVand tem-
peratureTof a gas are related bypV=kT, where
kis a constant. Determine the total differentials
(a) dpand (b) dTin terms ofp,VandT.(a) Total differential dp=∂p
∂TdT+∂p
∂VdV.Since pV=kTthenp=kT
V
hence∂p
∂T=k
Vand∂p
∂V=−kT
V^2Thus dp =k
VdT−kT
V^2dVSince pV=kT,k=pV
THence dp =(
pV
T)VdT−(
pV
T)
TV^2dVi.e. dp=p
TdT−p
VdV(b) Total differential dT=∂T
∂pdp+∂T
∂VdVSince pV=kT,T=pV
khence∂T
∂p=V
kand∂T
∂V=p
k