PARTIAL FRACTIONS 19A
whereAandBare constants to be determined,
i.e.11 − 3 x
(x−1)(x+3)≡A(x+3)+B(x−1)
(x−1)(x+3),by algebraic addition.
Since the denominators are the same on each side
of the identity then the numerators are equal to each
other.
Thus, 11− 3 x≡A(x+3)+B(x−1)
To determine constantsAandB, values ofxare
chosen to make the term inAorBequal to zero.
Whenx=1, then
11 −3(1)≡A(1+3)+B(0)i.e. 8 = 4 A
i.e. A= 2
Whenx=−3, then
11 −3(−3)≡A(0)+B(− 3 −1)i.e. 20 =− 4 B
i.e. B=− 5
Thus
11 − 3 x
x^2 + 2 x− 3≡2
(x−1)+− 5
(x+3)≡2
(x− 1 )−5
(x+ 3 )[
Check:2
(x−1)−5
(x+3)=2(x+3)−5(x−1)
(x−1)(x+3)=11 − 3 x
x^2 + 2 x− 3]Problem 2. Convert2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)
into the sum of three partial fractions.Let
2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)≡A
(x+1)+B
(x−2)+C
(x+3)≡(
A(x−2)(x+3)+B(x+1)(x+3)
+C(x+1)(x−2))(x+1)(x−2)(x+3)by algebraic addition.
Equating the numerators gives:2 x^2 − 9 x− 35 ≡A(x−2)(x+3)+B(x+1)(x+3)+C(x+1)(x−2)Letx=−1. Then2(−1)^2 −9(−1)− 35 ≡A(−3)(2)
+B(0)(2)+C(0)(−3)i.e. − 24 =− 6 Ai.e. A=− 24
− 6= 4Letx=2. Then2(2)^2 −9(2)− 35 ≡A(0)(5)+B(3)(5)+C(3)(0)
i.e. − 45 = 15 Bi.e. B=− 45
15=− 3
Letx=−3. Then2(−3)^2 −9(−3)− 35 ≡A(−5)(0)+B(−2)(0)
+C(−2)(−5)
i.e. 10 = 10 C
i.e. C= 1Thus2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)≡4
(x+ 1 )−3
(x− 2 )+1
(x+ 3 )Problem 3. Resolvex^2 + 1
x^2 − 3 x+ 2into partial
fractions.The denominator is of the same degree as the
numerator. Thus dividing out gives:1
x^2 − 3 x+ 2)
x^2 + 1
x^2 − 3 x+ 2
—————
3 x− 1
———For more on polynomial division, see Section 1.4,
page 6.