PARTIAL FRACTIONS 19
A
whereAandBare constants to be determined,
i.e.
11 − 3 x
(x−1)(x+3)
≡
A(x+3)+B(x−1)
(x−1)(x+3)
,
by algebraic addition.
Since the denominators are the same on each side
of the identity then the numerators are equal to each
other.
Thus, 11− 3 x≡A(x+3)+B(x−1)
To determine constantsAandB, values ofxare
chosen to make the term inAorBequal to zero.
Whenx=1, then
11 −3(1)≡A(1+3)+B(0)
i.e. 8 = 4 A
i.e. A= 2
Whenx=−3, then
11 −3(−3)≡A(0)+B(− 3 −1)
i.e. 20 =− 4 B
i.e. B=− 5
Thus
11 − 3 x
x^2 + 2 x− 3
≡
2
(x−1)
+
− 5
(x+3)
≡
2
(x− 1 )
−
5
(x+ 3 )
[
Check:
2
(x−1)
−
5
(x+3)
=
2(x+3)−5(x−1)
(x−1)(x+3)
=
11 − 3 x
x^2 + 2 x− 3
]
Problem 2. Convert
2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)
into the sum of three partial fractions.
Let
2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)
≡
A
(x+1)
+
B
(x−2)
+
C
(x+3)
≡
(
A(x−2)(x+3)+B(x+1)(x+3)
+C(x+1)(x−2)
)
(x+1)(x−2)(x+3)
by algebraic addition.
Equating the numerators gives:
2 x^2 − 9 x− 35 ≡A(x−2)(x+3)
+B(x+1)(x+3)+C(x+1)(x−2)
Letx=−1. Then
2(−1)^2 −9(−1)− 35 ≡A(−3)(2)
+B(0)(2)+C(0)(−3)
i.e. − 24 =− 6 A
i.e. A=
− 24
− 6
= 4
Letx=2. Then
2(2)^2 −9(2)− 35 ≡A(0)(5)+B(3)(5)+C(3)(0)
i.e. − 45 = 15 B
i.e. B=
− 45
15
=− 3
Letx=−3. Then
2(−3)^2 −9(−3)− 35 ≡A(−5)(0)+B(−2)(0)
+C(−2)(−5)
i.e. 10 = 10 C
i.e. C= 1
Thus
2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)
≡
4
(x+ 1 )
−
3
(x− 2 )
+
1
(x+ 3 )
Problem 3. Resolve
x^2 + 1
x^2 − 3 x+ 2
into partial
fractions.
The denominator is of the same degree as the
numerator. Thus dividing out gives:
1
x^2 − 3 x+ 2
)
x^2 + 1
x^2 − 3 x+ 2
—————
3 x− 1
———
For more on polynomial division, see Section 1.4,
page 6.