Higher Engineering Mathematics

(Greg DeLong) #1
368 INTEGRAL CALCULUS

Table 37.1 Standard integrals

(i)


axndx=

axn+^1
n+ 1

+c

(except whenn=−1)

(ii)


cosaxdx=

1
a

sinax+c

(iii)


sinaxdx=−

1
a

cosax+c

(iv)


sec^2 axdx=

1
a

tanax+c

(v)


cosec^2 axdx=−

1
a

cotax+c

(vi)


cosecaxcotaxdx=−

1
a

cosecax+c

(vii)


secaxtanaxdx=

1
a

secax+c

(viii)


eaxdx=

1
a

eax+c

(ix)


1
x

dx=lnx+c

Problem 1. Determine (a)


5 x^2 dx(b)


2 t^3 dt.

The standard integral,



axndx=

axn+^1
n+ 1

+c

(a) Whena=5 andn=2 then

5 x^2 dx=

5 x^2 +^1
2 + 1

+c=

5 x^3
3

+c

(b) Whena=2 andn=3 then

2 t^3 dt=

2 t^3 +^1
3 + 1

+c=

2 t^4
4

+c=

1
2

t^4 +c

Each of these results may be checked by differenti-
ating them.

Problem 2. Determine
∫(
4 +

3
7

x− 6 x^2

)
dx.


(4+^37 x− 6 x^2 )dxmay be written as

4dx +

∫ 3
7 xdx−


6 x^2 dx, i.e. each term is

integrated separately. (This splitting up of terms only
applies, however, for addition and subtraction.)

Hence

∫(
4 +

3
7

x− 6 x^2

)
dx

= 4 x+

(
3
7

)
x^1 +^1
1 + 1

−(6)

x^2 +^1
2 + 1

+c

= 4 x+

(
3
7

)
x^2
2

−(6)

x^3
3

+c

= 4 x+

3
14

x^2 − 2 x^3 +c

Note that when an integral contains more than one
term there is no need to have an arbitrary constant
for each; just a single constant at the end is sufficient.

Problem 3. Determine

(a)


2 x^3 − 3 x
4 x

dx (b)


(1−t)^2 dt

(a) Rearranging into standard integral form gives:

2 x^3 − 3 x
4 x

dx

=


2 x^3
4 x


3 x
4 x

dx=


x^2
2


3
4

dx

=

(
1
2

)
x^2 +^1
2 + 1


3
4

x+c

=

(
1
2

)
x^3
3


3
4

x+c=

1
6

x^3 −

3
4

x+c

(b) Rearranging


(1−t)^2 dtgives:


(1− 2 t+t^2 )dt=t−

2 t^1 +^1
1 + 1

+

t^2 +^1
2 + 1

+c

=t−

2 t^2
2

+

t^3
3

+c

=t−t^2 +

1
3

t^3 +c

This problem shows that functions often have to be
rearranged into the standard form of


axndxbefore
it is possible to integrate them.
Free download pdf