386 INTEGRAL CALCULUS
IPP=Ak^2 PP, from which,
kPP=
√
IPP
area
=
√(
645000
600
)
=32.79 mm
Problem 13. Determine the second moment of
area and radius of gyration about axisQQof the
triangleBCDshown in Fig. 38.20.
B
G G
CD
QQ
12.0 cm
8.0 cm 6.0 cm
Figure 38.20
Using the parallel axis theorem:IQQ=IGG+Ad^2 ,
whereIGGis the second moment of area about the
centroid of the triangle,
i.e.
bh^3
36
=
(8.0)(12.0)^3
36
=384 cm^4 ,
Ais the area of the triangle,
=^12 bh=^12 (8.0)(12.0)=48 cm^2
anddis the distance between axesGGandQQ,
= 6. 0 +^13 (12.0)=10 cm.
Hence the second moment of area about axisQQ,
IQQ= 384 +(48)(10)^2 =5184 cm^4.
Radius of gyration,
kQQ=
√
IQQ
area
=
√(
5184
48
)
=10.4 cm
Problem 14. Determine the second moment of
area and radius of gyration of the circle shown
in Fig. 38.21 about axisYY.
YY
3.0 cm
GG
r = 2.0 cm
Figure 38.21
In Fig. 38.21,IGG=
πr^4
4
=
π
4
(2.0)^4 = 4 πcm^4.
Using the parallel axis theorem,IYY=IGG+Ad^2 ,
whered= 3. 0 + 2. 0 = 5 .0 cm.
Hence IYY = 4 π+[π(2.0)^2 ](5.0)^2
= 4 π+ 100 π= 104 π=327 cm^4.
Radius of gyration,
kYY=
√
IYY
area
=
√(
104 π
π(2.0)^2
)
=
√
26 =5.10 cm
Problem 15. Determine the second moment of
area and radius of gyration for the semicircle
shown in Fig. 38.22 about axisXX.
G G
B B
XX
15.0 mm
10.0 mm
Figure 38.22