INTEGRATION USING ALGEBRAIC SUBSTITUTIONS 393H
7.∫ 10(3x+1)^5 dx [227.5]8.∫ 20x√
(2x^2 +1) dx [4.333]9.∫ π
302 sin(
3 t+π
4)
dt [0.9428]10.∫ 103 cos (4x−3) dx [0.7369]39.4 Further worked problems on
integration using algebraic
substitutionsProblem 7. Find∫
x
2 + 3 x^2dx.Letu= 2 + 3 x^2 then
du
dx= 6 xand dx=du
6 x
Hence
∫
x
2 + 3 x^2dx=∫
x
udu
6 x=1
6∫
1
udu,by cancelling,=1
6lnu+c=1
6ln(2+ 3 x^2 )+cProblem 8. Determine∫
2 x
√
(4x^2 −1)dx.Letu= 4 x^2 −1 then
du
dx= 8 xand dx=du
8 xHence∫
2 x
√
(4x^2 −1)dx=∫
2 x
√
udu
8 x=1
4∫
1
√
udu, by cancelling=1
4∫
u− 1(^2) du=
1
4
⎡
⎢
⎣
u
(− 1
2
)
- 1
−
1
2
1
⎤
⎥
⎦+c
1
4
⎡
⎢
⎣
u
1
2
1
2
⎤
⎥
⎦+c=
1
2
√
u+c
1
2
√
(4x^2 −1)+c
Problem 9. Show that
∫
tanθdθ=ln (secθ)+c.
∫
tanθdθ=
∫
sinθ
cosθ
dθ. Letu=cosθ
then
du
dθ
=−sinθand dθ=
−du
sinθ
Hence
∫
sinθ
cosθ
dθ=
∫
sinθ
u
(
−du
sinθ
)
=−
∫
1
u
du=−lnu+c
=−ln (cosθ)+c=ln (cosθ)−^1 +c,
by the laws of logarithms
Hence
∫
tanθdθ=ln(secθ)+c,
since (cosθ)−^1 =
1
cosθ
=secθ
39.5 Change of limits
When evaluating definite integrals involving substi-
tutions it is sometimes more convenient tochange
the limitsof the integral as shown in Problems 10
and 11.
Problem 10. Evaluate
∫ 3
15 x
√
(2x^2 +7) dx,
taking positive values of square roots only.
Letu= 2 x^2 +7, then
du
dx
= 4 xand dx=
du
4 x