INTEGRATION USING ALGEBRAIC SUBSTITUTIONS 393
H
7.
∫ 1
0
(3x+1)^5 dx [227.5]
8.
∫ 2
0
x
√
(2x^2 +1) dx [4.333]
9.
∫ π
3
0
2 sin
(
3 t+
π
4
)
dt [0.9428]
10.
∫ 1
0
3 cos (4x−3) dx [0.7369]
39.4 Further worked problems on
integration using algebraic
substitutions
Problem 7. Find
∫
x
2 + 3 x^2
dx.
Letu= 2 + 3 x^2 then
du
dx
= 6 xand dx=
du
6 x
Hence
∫
x
2 + 3 x^2
dx=
∫
x
u
du
6 x
=
1
6
∫
1
u
du,
by cancelling,
=
1
6
lnu+c=
1
6
ln(2+ 3 x^2 )+c
Problem 8. Determine
∫
2 x
√
(4x^2 −1)
dx.
Letu= 4 x^2 −1 then
du
dx
= 8 xand dx=
du
8 x
Hence
∫
2 x
√
(4x^2 −1)
dx=
∫
2 x
√
u
du
8 x
=
1
4
∫
1
√
u
du, by cancelling
=
1
4
∫
u
− 1
(^2) du=
1
4
⎡
⎢
⎣
u
(− 1
2
)
- 1
−
1
2
1
⎤
⎥
⎦+c
1
4
⎡
⎢
⎣
u
1
2
1
2
⎤
⎥
⎦+c=
1
2
√
u+c
1
2
√
(4x^2 −1)+c
Problem 9. Show that
∫
tanθdθ=ln (secθ)+c.
∫
tanθdθ=
∫
sinθ
cosθ
dθ. Letu=cosθ
then
du
dθ
=−sinθand dθ=
−du
sinθ
Hence
∫
sinθ
cosθ
dθ=
∫
sinθ
u
(
−du
sinθ
)
=−
∫
1
u
du=−lnu+c
=−ln (cosθ)+c=ln (cosθ)−^1 +c,
by the laws of logarithms
Hence
∫
tanθdθ=ln(secθ)+c,
since (cosθ)−^1 =
1
cosθ
=secθ
39.5 Change of limits
When evaluating definite integrals involving substi-
tutions it is sometimes more convenient tochange
the limitsof the integral as shown in Problems 10
and 11.
Problem 10. Evaluate
∫ 3
15 x
√
(2x^2 +7) dx,
taking positive values of square roots only.
Letu= 2 x^2 +7, then
du
dx
= 4 xand dx=
du
4 x