Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING ALGEBRAIC SUBSTITUTIONS 393

H

7.

∫ 1

0

(3x+1)^5 dx [227.5]

8.

∫ 2

0

x


(2x^2 +1) dx [4.333]

9.

∫ π
3

0

2 sin

(
3 t+

π
4

)
dt [0.9428]

10.

∫ 1

0

3 cos (4x−3) dx [0.7369]

39.4 Further worked problems on


integration using algebraic
substitutions

Problem 7. Find


x
2 + 3 x^2

dx.

Letu= 2 + 3 x^2 then


du
dx

= 6 xand dx=

du
6 x
Hence



x
2 + 3 x^2

dx=


x
u

du
6 x

=

1
6


1
u

du,

by cancelling,

=

1
6

lnu+c=

1
6

ln(2+ 3 x^2 )+c

Problem 8. Determine


2 x

(4x^2 −1)

dx.

Letu= 4 x^2 −1 then


du
dx

= 8 xand dx=

du
8 x

Hence


2 x

(4x^2 −1)

dx=


2 x

u

du
8 x

=

1
4


1

u

du, by cancelling

=

1
4


u

− 1

(^2) du=
1
4



u
(− 1
2
)



  • 1

    1
    2


  • 1


    ⎦+c


    1
    4



    u
    1
    2
    1
    2


    ⎦+c=
    1
    2

    u+c


    1
    2

    (4x^2 −1)+c
    Problem 9. Show that

    tanθdθ=ln (secθ)+c.

    tanθdθ=

    sinθ
    cosθ
    dθ. Letu=cosθ
    then
    du

    =−sinθand dθ=
    −du
    sinθ
    Hence

    sinθ
    cosθ
    dθ=

    sinθ
    u
    (
    −du
    sinθ
    )
    =−

    1
    u
    du=−lnu+c
    =−ln (cosθ)+c=ln (cosθ)−^1 +c,
    by the laws of logarithms
    Hence

    tanθdθ=ln(secθ)+c,
    since (cosθ)−^1 =
    1
    cosθ
    =secθ
    39.5 Change of limits
    When evaluating definite integrals involving substi-
    tutions it is sometimes more convenient tochange
    the limitsof the integral as shown in Problems 10
    and 11.
    Problem 10. Evaluate
    ∫ 3
    15 x

    (2x^2 +7) dx,
    taking positive values of square roots only.
    Letu= 2 x^2 +7, then
    du
    dx
    = 4 xand dx=
    du
    4 x



Free download pdf