PARTIAL FRACTIONS 23A
Identity (1) may be expanded as:
7 x^2 + 5 x+ 13 ≡Ax^2 +Ax+Bx+B+Cx^2 + 2 C
Equating the coefficients ofx^2 terms gives:
7 =A+C, and sinceC=5,A= 2Equating the coefficients ofxterms gives:
5 =A+B, and sinceA=2,B= 3[Check: equating the constant terms gives:
13 =B+ 2 CWhenB=3 andC=5,
B+ 2 C= 3 + 10 = 13 =LHS]Hence
7 x^2 + 5 x+ 13
(x^2 + 2 )(x+ 1 )≡2 x+ 3
(x^2 + 2 )+5
(x+ 1 )Problem 9. Resolve3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)intopartial fractions.Terms such asx^2 may be treated as (x+0)^2 , i.e. they
are repeated linear factors.
Let
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)≡A
x+B
x^2+Cx+D
(x^2 +3)≡Ax(x^2 +3)+B(x^2 +3)+(Cx+D)x^2
x^2 (x^2 +3)Equating the numerators gives:
3 + 6 x+ 4 x^2 − 2 x^3 ≡Ax(x^2 +3)+B(x^2 +3)
+(Cx+D)x^2
≡Ax^3 + 3 Ax+Bx^2 + 3 B
+Cx^3 +Dx^2Letx=0. Then 3= 3 B
i.e. B= 1
Equating the coefficients ofx^3 terms gives:
− 2 =A+C (1)Equating the coefficients ofx^2 terms gives:
4 =B+DSinceB=1,D= 3
Equating the coefficients ofxterms gives:6 = 3 Ai.e.A= 2From equation (1), sinceA=2,C=− 4Hence3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 + 3 )≡2
x+1
x^2+− 4 x+ 3
x^2 + 3≡2
x+1
x^2+3 − 4 x
x^2 + 3Now try the following exercise.Exercise 15 Further problems on partial
fractions with quadratic factors1.x^2 −x− 13
(x^2 +7)(x−2)[
2 x+ 3
(x^2 +7)−1
(x−2)]2.6 x− 5
(x−4)(x^2 +3)[
1
(x−4)+2 −x
(x^2 +3)]3.15 + 5 x+ 5 x^2 − 4 x^3
x^2 (x^2 +5)[
1
x+3
x^2+2 − 5 x
(x^2 +5)]4.x^3 + 4 x^2 + 20 x− 7
(x−1)^2 (x^2 +8)
[
3
(x−1)+2
(x−1)^2+1 − 2 x
(x^2 +8)]- When solving the differential equation
d^2 θ
dt^2
− 6dθ
dt− 10 θ= 20 −e^2 t by Laplace
transforms, for given boundary conditions,
the following expression forL{θ}results:L{θ}=4 s^3 −39
2s^2 + 42 s− 40s(s−2)(s^2 − 6 s+10)Show that the expression can be resolved into
partial fractions to give:L{θ}=2
s−1
2(s−2)+5 s− 3
2(s^2 − 6 s+10)