PARTIAL FRACTIONS 23
A
Identity (1) may be expanded as:
7 x^2 + 5 x+ 13 ≡Ax^2 +Ax+Bx+B+Cx^2 + 2 C
Equating the coefficients ofx^2 terms gives:
7 =A+C, and sinceC=5,A= 2
Equating the coefficients ofxterms gives:
5 =A+B, and sinceA=2,B= 3
[Check: equating the constant terms gives:
13 =B+ 2 C
WhenB=3 andC=5,
B+ 2 C= 3 + 10 = 13 =LHS]
Hence
7 x^2 + 5 x+ 13
(x^2 + 2 )(x+ 1 )
≡
2 x+ 3
(x^2 + 2 )
+
5
(x+ 1 )
Problem 9. Resolve
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)
into
partial fractions.
Terms such asx^2 may be treated as (x+0)^2 , i.e. they
are repeated linear factors.
Let
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)
≡
A
x
+
B
x^2
+
Cx+D
(x^2 +3)
≡
Ax(x^2 +3)+B(x^2 +3)+(Cx+D)x^2
x^2 (x^2 +3)
Equating the numerators gives:
3 + 6 x+ 4 x^2 − 2 x^3 ≡Ax(x^2 +3)+B(x^2 +3)
+(Cx+D)x^2
≡Ax^3 + 3 Ax+Bx^2 + 3 B
+Cx^3 +Dx^2
Letx=0. Then 3= 3 B
i.e. B= 1
Equating the coefficients ofx^3 terms gives:
− 2 =A+C (1)
Equating the coefficients ofx^2 terms gives:
4 =B+D
SinceB=1,D= 3
Equating the coefficients ofxterms gives:
6 = 3 A
i.e.A= 2
From equation (1), sinceA=2,C=− 4
Hence
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 + 3 )
≡
2
x
+
1
x^2
+
− 4 x+ 3
x^2 + 3
≡
2
x
+
1
x^2
+
3 − 4 x
x^2 + 3
Now try the following exercise.
Exercise 15 Further problems on partial
fractions with quadratic factors
1.
x^2 −x− 13
(x^2 +7)(x−2)
[
2 x+ 3
(x^2 +7)
−
1
(x−2)
]
2.
6 x− 5
(x−4)(x^2 +3)
[
1
(x−4)
+
2 −x
(x^2 +3)
]
3.
15 + 5 x+ 5 x^2 − 4 x^3
x^2 (x^2 +5)
[
1
x
+
3
x^2
+
2 − 5 x
(x^2 +5)
]
4.
x^3 + 4 x^2 + 20 x− 7
(x−1)^2 (x^2 +8)
[
3
(x−1)
+
2
(x−1)^2
+
1 − 2 x
(x^2 +8)
]
- When solving the differential equation
d^2 θ
dt^2
− 6
dθ
dt
− 10 θ= 20 −e^2 t by Laplace
transforms, for given boundary conditions,
the following expression forL{θ}results:
L{θ}=
4 s^3 −
39
2
s^2 + 42 s− 40
s(s−2)(s^2 − 6 s+10)
Show that the expression can be resolved into
partial fractions to give:
L{θ}=
2
s
−
1
2(s−2)
+
5 s− 3
2(s^2 − 6 s+10)