Higher Engineering Mathematics

(Greg DeLong) #1
PARTIAL FRACTIONS 23

A

Identity (1) may be expanded as:


7 x^2 + 5 x+ 13 ≡Ax^2 +Ax+Bx+B+Cx^2 + 2 C


Equating the coefficients ofx^2 terms gives:


7 =A+C, and sinceC=5,A= 2

Equating the coefficients ofxterms gives:


5 =A+B, and sinceA=2,B= 3

[Check: equating the constant terms gives:


13 =B+ 2 C

WhenB=3 andC=5,


B+ 2 C= 3 + 10 = 13 =LHS]

Hence


7 x^2 + 5 x+ 13
(x^2 + 2 )(x+ 1 )


2 x+ 3
(x^2 + 2 )

+

5
(x+ 1 )

Problem 9. Resolve

3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)

into

partial fractions.

Terms such asx^2 may be treated as (x+0)^2 , i.e. they
are repeated linear factors.


Let


3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)


A
x

+

B
x^2

+

Cx+D
(x^2 +3)


Ax(x^2 +3)+B(x^2 +3)+(Cx+D)x^2
x^2 (x^2 +3)

Equating the numerators gives:


3 + 6 x+ 4 x^2 − 2 x^3 ≡Ax(x^2 +3)+B(x^2 +3)
+(Cx+D)x^2
≡Ax^3 + 3 Ax+Bx^2 + 3 B
+Cx^3 +Dx^2

Letx=0. Then 3= 3 B


i.e. B= 1


Equating the coefficients ofx^3 terms gives:


− 2 =A+C (1)

Equating the coefficients ofx^2 terms gives:


4 =B+D

SinceB=1,D= 3


Equating the coefficients ofxterms gives:

6 = 3 A

i.e.A= 2

From equation (1), sinceA=2,C=− 4

Hence

3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 + 3 )


2
x

+

1
x^2

+

− 4 x+ 3
x^2 + 3


2
x

+

1
x^2

+

3 − 4 x
x^2 + 3

Now try the following exercise.

Exercise 15 Further problems on partial
fractions with quadratic factors

1.

x^2 −x− 13
(x^2 +7)(x−2)

[
2 x+ 3
(x^2 +7)


1
(x−2)

]

2.

6 x− 5
(x−4)(x^2 +3)

[
1
(x−4)

+

2 −x
(x^2 +3)

]

3.

15 + 5 x+ 5 x^2 − 4 x^3
x^2 (x^2 +5)

[
1
x

+

3
x^2

+

2 − 5 x
(x^2 +5)

]

4.

x^3 + 4 x^2 + 20 x− 7
(x−1)^2 (x^2 +8)
[
3
(x−1)

+

2
(x−1)^2

+

1 − 2 x
(x^2 +8)

]


  1. When solving the differential equation
    d^2 θ
    dt^2


− 6


dt

− 10 θ= 20 −e^2 t by Laplace
transforms, for given boundary conditions,
the following expression forL{θ}results:

L{θ}=

4 s^3 −

39
2

s^2 + 42 s− 40

s(s−2)(s^2 − 6 s+10)

Show that the expression can be resolved into
partial fractions to give:

L{θ}=

2
s


1
2(s−2)

+

5 s− 3
2(s^2 − 6 s+10)
Free download pdf