INTEGRATION USING PARTIAL FRACTIONS 411H
It was shown in Problem 9, page 23:
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)≡2
x+1
x^2+3 − 4 x
(x^2 +3)Thus
∫
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)dx≡∫ (
2
x+1
x^2+(3− 4 x)
(x^2 +3))
dx=∫ {
2
x+1
x^2+3
(x^2 +3)−4 x
(x^2 +3)}
dx∫
3
(x^2 +3)
dx= 3∫
1x^2 +(√
3)^2dx=
3
√
3tan−^1x
√
3, from 12, Table 40.1, page 398.∫
4 x
x^2 + 3
dxis determined using the algebraic sub-stitutionu=(x^2 +3).
Hence
∫ {
2
x+1
x^2+3
(x^2 +3)−4 x
(x^2 +3)}
dx=2lnx−1
x+3
√
3tan−^1x
√
3
−2ln(x^2 +3)+c=ln(
x
x^2 + 3) 2
−1
x+√
3 tan−^1x
√
3+cProblem 9. Determine∫
1
(x^2 −a^2 )dx.Let
1
(x^2 −a^2 )≡A
(x−a)+B
(x+a)≡A(x+a)+B(x−a)
(x+a)(x−a)Equating the numerators gives:
1 ≡A(x+a)+B(x−a)Let x=a, then A=
1
2 a, and let x=−a, thenB=−
1
2 aHence∫
1
(x^2 −a^2 )dx≡∫
1
2 a[
1
(x−a)−1
(x+a)]
dx=1
2 a[ln(x−a)−ln (x+a)]+c=1
2 aln(
x−a
x+a)
+cProblem 10. Evaluate
∫ 433
(x^2 −4)dx,correct to 3 significant figures.From Problem 9,
∫ 433
(x^2 −4)dx= 3[
1
2(2)ln(
x− 2
x+ 2)] 43=3
4[
ln2
6−ln1
5]=3
4ln5
3= 0. 383 , correct to 3significant figuresProblem 11. Determine∫
1
(a^2 −x^2 )dx.Using partial fractions, let1
(a^2 −x^2 )≡1
(a−x)(a+x)≡A
(a−x)+B
(a+x)≡A(a+x)+B(a−x)
(a−x)(a+x)Then 1≡A(a+x)+B(a−x)Letx=athenA=1
2 a. Letx=−athenB=
1
2 aHence∫
1
(a^2 −x^2 )dx=∫
1
2 a[
1
(a−x)+1
(a+x)]
dx