414 INTEGRAL CALCULUS
=∫^1
2 t
1 +t^2(
2 dt
1 +t^2)=∫
1
tdt=lnt+cHence
∫
dθ
sinθ=ln(
tanθ
2)
+cProblem 2. Determine:∫
dx
cosxIf tan
x
2then cosx=1 −t^2
1 +t^2and dx=2dt
1 +t^2fromequations (2) and (3).
Thus
∫
dx
cosx=∫1
1 −t^2
1 +t^2(
2dt
1 +t^2)=∫
2
1 −t^2dt2
1 −t^2may be resolved into partial fractions (seeChapter 3).
Let2
1 −t^2=2
(1−t)(1+t)=A
(1−t)+B
(1+t)=A(1+t)+B(1−t)
(1−t)(1+t)
Hence 2 =A(1+t)+B(1−t)
When t=1, 2= 2 A, from which,A= 1
When t=−1, 2= 2 B, from which,B= 1Hence∫
2dt
1 −t^2=∫
1
(1−t)+1
(1+t)dt=−ln(1−t)+ln(1+t)+c=ln{
(1+t)
(1−t)}
+cThus
∫
dx
cosx=ln⎧
⎪⎨⎪⎩1 +tanx
2
1 −tanx
2⎫
⎪⎬⎪⎭+cNote that since tan
π
4=1, the above result may bewritten as:
∫
dx
cosx=ln⎧
⎪⎨⎪⎩tanπ
4+tanx
2
1 −tanπ
4tanx
2⎫
⎪⎬⎪⎭+c=ln{
tan(π4+x
2)}
+cfrom compound angles, Chapter 18.Problem 3. Determine:∫
dx
1 +cosxIf tanx
2then cosx=1 −t^2
1 +t^2and dx=2dt
1 +t^2from
equations (2) and (3).Thus∫
dx
1 +cosx=∫
1
1 +cosxdx=∫
11 +1 −t^2
1 +t^2(
2dt
1 +t^2)=∫
1
(1+t^2 )+(1−t^2 )
1 +t^2(
2dt
1 +t^2)=∫
dtHence∫
dx
1 +cosx=t+c=tanx
2+cProblem 4. Determine:∫
dθ
5 +4 cosθIf t=tanθ
2then cosθ=1 −t^2
1 +t^2and dx=2dt
1 +t^2
from equations (2) and (3).Thus∫
dθ
5 +4 cosθ=∫(
2dt
1 +t^2)5 + 4(
1 −t^2
1 +t^2)=∫(
2dt
1 +t^2)5(1+t^2 )+4(1−t^2 )
(1+t^2 )= 2∫
dt
t^2 + 9= 2∫
dt
t^2 + 32= 2(
1
3tan−^1t
3)
+c,