416 INTEGRAL CALCULUS
from 12, Table 40.1, page 398. Hence
∫
dx
7 −3 sinx+6 cosx
=tan−^1
⎛
⎜
⎝
tan
x
2
− 3
2
⎞
⎟
⎠+c
Problem 7. Determine:
∫
dθ
4 cosθ+3 sinθ
From equations (1) to (3),
∫
dθ
4 cosθ+3 sinθ
=
∫
2dt
1 +t^2
4
(
1 −t^2
1 +t^2
)
+ 3
(
2 t
1 +t^2
)
=
∫
2dt
4 − 4 t^2 + 6 t
=
∫
dt
2 + 3 t− 2 t^2
=−
1
2
∫
dt
t^2 −
3
2
t− 1
=−
1
2
∫
dt
(
t−
3
4
) 2
−
25
16
=
1
2
∫
dt
(
5
4
) 2
−
(
t−
3
4
) 2
=
1
2
⎡
⎢
⎢
⎣
1
2
(
5
4
)ln
⎧
⎪⎪
⎨
⎪⎪
⎩
5
4
+
(
t−
3
4
)
5
4
−
(
t−
3
4
)
⎫
⎪⎪
⎬
⎪⎪
⎭
⎤
⎥
⎥
⎦+c
from problem 11, Chapter 41, page 411
=
1
5
ln
⎧
⎪⎨
⎪⎩
1
2
+t
2 −t
⎫
⎪⎬
⎪⎭
+c
Hence
∫
dθ
4 cosθ+3 sinθ
=
1
5
ln
⎧
⎪⎨
⎪⎩
1
2
+tan
θ
2
2 −tan
θ
2
⎫
⎪⎬
⎪⎭
+c
or
1
5
ln
⎧
⎪⎨
⎪⎩
1 +2 tan
θ
2
4 −2 tan
θ
2
⎫
⎪⎬
⎪⎭
+c
Now try the following exercise.
Exercise 167 Further problems on the
t=tanθ/2 substitution
In Problems 1 to 4, integrate with respect to the
variable.
1.
∫
dθ
5 +4 sinθ
⎡
⎢
⎣
2
3
tan−^1
⎛
⎜
⎝
5 tan
θ
2
+ 4
3
⎞
⎟
⎠+c
⎤
⎥
⎦
2.
∫
dx
1 +2 sinx
⎡
⎢
⎣
1
√
3
ln
⎧
⎪⎨
⎪⎩
tan
x
2
+ 2 −
√
3
tan
x
2
+ 2 +
√
3
⎫
⎪⎬
⎪⎭
+c
⎤
⎥
⎦
3.
∫
dp
3 −4 sinp+2 cosp
⎡
⎢
⎣
1
√
11
ln
⎧
⎪⎨
⎪⎩
tan
p
2
− 4 −
√
11
tan
p
2
− 4 +
√
11
⎫
⎪⎬
⎪⎭
+c
⎤
⎥
⎦
4.
∫
dθ
3 −4 sinθ
⎡
⎢
⎣
1
√
7
ln
⎧
⎪⎨
⎪⎩
3 tan
θ
2
− 4 −
√
7
3 tan
θ
2
− 4 +
√
7
⎫
⎪⎬
⎪⎭
+c
⎤
⎥
⎦
- Show that
∫
dt
1 +3 cost
=
1
2
√
2
ln
⎧
⎪⎨
⎪⎩
√
2 +tan
t
2
√
2 −tan
t
2
⎫
⎪⎬
⎪⎭
+c
- Show that
∫π/ 3
0
3dθ
cosθ
= 3 .95, correct to 3
significant figures.
- Show that
∫π/ 2
0
dθ
2 +cosθ
=
π
3
√
3