Higher Engineering Mathematics

(Greg DeLong) #1

420 INTEGRAL CALCULUS


From Problem 1,



xcosxdx=xsinx+cosx

Hence



x^2 sinxdx

=−x^2 cosx+ 2 {xsinx+cosx}+c

=−x^2 cosx+ 2 xsinx+2 cosx+c

= (2−x^2 )cosx+ 2 xsinx+c

In general, if the algebraic term of a product is of
powern, then the integration by parts formula is
appliedntimes.


Now try the following exercise.


Exercise 168 Further problems on integra-
tion by parts

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.


xe^2 xdx

[[
e^2 x
2

(
x−

1
2

)]
+c

]

2.


4 x
e^3 x

dx

[

4
3

e−^3 x

(
x+

1
3

)
+c

]

3.


xsinxdx [−xcosx+sinx+c]

4.


5 θcos 2θdθ
[
5
2

(
θsin 2θ+^12 cos 2θ

)
+c

]

5.


3 t^2 e^2 tdt

[ 3
2 e

2 t(t (^2) −t+ 1
2
)
+c
]
Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.
6.
∫ 2
0
2 xexdx [16.78]
7.
∫π
4
0
xsin 2xdx [0.2500]
8.
∫π
2
0
t^2 costdt [0.4674]
9.
∫ 2
1
3 x^2 e
x
(^2) dx [15.78]
43.3 Further worked problems on
integration by parts
Problem 6. Find

xlnxdx.
The logarithmic function is chosen as the ‘upart’.
Thus whenu=lnx, then
du
dx


1
x
, i.e. du=
dx
x
Letting dv=xdxgivesv=

xdx=
x^2
2
Substituting into

udv=uv−

vdugives:

xlnxdx=(lnx)
(
x^2
2
)

∫ (
x^2
2
)
dx
x


x^2
2
lnx−
1
2

xdx


x^2
2
lnx−
1
2
(
x^2
2
)
+c
Hence

xlnxdx=
x^2
2
(
lnx−
1
2
)
+cor
x^2
4
(2 lnx−1)+c
Problem 7. Determine

lnxdx.

lnxdxis the same as

(1) lnxdx
Letu=lnx, from which,
du
dx


1
x
, i.e. du=
dx
x
and let dv=1dx, from which,v=

1dx=x
Substituting into

udv=uv−

vdugives:

lnxdx=(lnx)(x)−

x
dx
x
=xlnx−

dx=xlnx−x+c
Hence

lnxdx=x(lnx−1)+c
Problem 8. Evaluate
∫ 9
1

xlnxdx, correct to
3 significant figures.

Free download pdf