422 INTEGRAL CALCULUS
i.e.(
1 +a^2
b^2)∫
eaxcosbxdx=1
beaxsinbx+a
b^2eaxcosbxi.e.(
b^2 +a^2
b^2)∫
eaxcosbxdx=eax
b^2(bsinbx+acosbx)Hence∫
eaxcosbxdx=(
b^2
b^2 +a^2)(
eax
b^2)
(bsinbx+acosbx)=eax
a^2 +b^2(bsinbx+acosbx)+cUsing a similar method to above, that is, integrating
by parts twice, the following result may be proved:
∫
eaxsinbxdx=eax
a^2 +b^2(asinbx−bcosbx)+c (2)Problem 10. Evaluate∫ π
4
0etsin 2tdt, correctto 4 decimal places.Comparing
∫
etsin 2tdtwith∫
eaxsinbxdxshows
thatx=t,a=1 andb=2.
Hence, substituting into equation (2) gives:
∫π
40etsin 2tdt=[
et
12 + 22(1 sin 2t−2 cos 2t)]π
40=[
eπ
4
5(
sin 2(π4)
−2 cos 2(π4))]−[
e^0
5(sin 0−2 cos 0)]=[
eπ
4
5(1−0)]−[
1
5(0−2)]
=eπ
4
5+2
5=0.8387, correct to 4 decimal placesNow try the following exercise.Exercise 169 Further problems on integra-
tion by partsDetermine the integrals in Problems 1 to 5 using
integration by parts.1.∫
2 x^2 lnxdx[
2
3x^3(
lnx−1
3)
+c]2.∫
2ln3xdx [2x(ln 3x−1)+c]3.∫
x^2 sin 3xdx[
cos 3x
27(2− 9 x^2 )+2
9xsin 3x+c]4.∫
2e^5 xcos 2xdx
[
2
29e^5 x(2 sin 2x+5 cos 2x)+c]5.∫
2 θsec^2 θdθ [2[θtanθ−ln(secθ)]+c]Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.6.∫ 21xlnxdx [0.6363]7.∫ 102e^3 xsin 2xdx [11.31]8.∫ π
20etcos 3tdt [− 1 .543]9.∫ 41√
x^3 lnxdx [12.78]