428 INTEGRAL CALCULUS
du
dx=(n−1) sinn−^2 xcosx anddu=(n−1) sinn−^2 xcosxdxand let dv=sinxdx, from which,
v=
∫
sinxdx=−cosx. Hence,In=
∫
sinn−^1 xsinxdx=(sinn−^1 x)(−cosx)−∫
(−cosx)(n−1) sinn−^2 xcosxdx=−sinn−^1 xcosx+(n−1)∫
cos^2 xsinn−^2 xdx=−sinn−^1 xcosx+(n−1)∫
(1−sin^2 x) sinn−^2 xdx=−sinn−^1 xcosx+(n−1){∫
sinn−^2 xdx−∫
sinnxdx}i.e. In=−sinn−^1 xcosx
+(n−1)In− 2 −(n−1)Ini.e. In+(n−1)In
=−sinn−^1 xcosx+(n−1)In− 2and nIn=−sinn−^1 xcosx+(n−1)In− 2
from which,
∫
sinnxdx=In=−1
nsinn−^1 xcosx+n− 1
nIn− 2 (4)Problem 8. Use a reduction formula to deter-
mine∫
sin^4 xdx.Using equation (4),
∫
sin^4 xdx=I 4 =−1
4sin^3 xcosx+3
4I 2I 2 =−1
2sin^1 xcosx+1
2I 0and I 0 =∫
sin^0 xdx=∫
1dx=xHence
∫
sin^4 xdx=I 4 =−1
4sin^3 xcosx+3
4[
−1
2sinxcosx+1
2(x)]=−1
4sin^3 xcosx−3
8sinxcosx+3
8x+cProblem 9. Evaluate∫ 1
0 4 sin(^5) tdt, correct to 3
significant figures.
Using equation (4),
∫
sin^5 tdt=I 5 =−
1
5
sin^4 tcost+
4
5
I 3
I 3 =−
1
3
sin^2 tcost+
2
3
I 1
and I 1 =−
1
1
sin^0 tcost+ 0 =−cost
Hence
∫
sin^5 tdt=−
1
5
sin^4 tcost
- 4
5
[
−
1
3
sin^2 tcost+
2
3
(−cost)
]
=−
1
5
sin^4 tcost−
4
15
sin^2 tcost
−
8
15
cost+c
and
∫t
0
4 sin^5 tdt
= 4
[
−
1
5
sin^4 tcost
−
4
15
sin^2 tcost−
8
15
cost
] 1
0
= 4
[(
−
1
5
sin^4 1 cos 1−
4
15
sin^2 1 cos 1
−
8
15
cos 1
)
−
(
− 0 − 0 −
8
15
)]