NUMERICAL INTEGRATION 435H
Corresponding values of
1
1 +sinxare shown in thetable below.
x1
1 +sinx0 1.0000
π
12(or 15◦) 0.79440π
6(or 30◦) 0.66667
π
4(or 45◦) 0.58579π
3(or 60◦) 0.535905 π
12(or 75◦) 0.50867π
2(or 90◦) 0.50000From equation (1):
∫ π
2
01
1 +sinxdx≈(π12){ 12(1. 00000 + 0 .50000)+ 0. 79440 + 0. 66667+ 0. 58579 + 0. 53590+ 0. 50867}=1.006, correct to 4
significant figuresNow try the following exercise.
Exercise 174 Further problems on the
trapezoidal ruleIn Problems 1 to 4, evaluate the definite integrals
using thetrapezoidal rule, giving the answers
correct to 3 decimal places.1.∫ 102
1 +x^2dx (Use 8 intervals) [1.569]2.∫ 312ln3xdx (Use 8 intervals) [6.979]3.∫π
30√
(sinθ)dθ (Use 6 intervals) [0.672]4.∫ 1. 40e−x2
dx (Use 7 intervals) [0.843]45.3 The mid-ordinate rule
Let a required definite integral be denoted again
by∫b
aydxand represented by the area under the
graph ofy=f(x) between the limitsx=aandx=b,
as shown in Fig. 45.2.adddOyy 1 y 2 y 3 ynb xy = f(x)Figure 45.2With the mid-ordinate rule each interval of width
d is assumed to be replaced by a rectangle of height
equal to the ordinate at the middle point of each
interval, shown asy 1 ,y 2 ,y 3 ,...ynin Fig. 45.2.Thus∫baydx≈dy 1 +dy 2 +dy 3 + ··· +dyn≈d(y 1 +y 2 +y 3 + ··· +yn)i.e.the mid-ordinate rule states:∫baydx≈(width of interval)(sum of mid-ordinates)(2)