Higher Engineering Mathematics

(Greg DeLong) #1
SOLUTION OF FIRST ORDER DIFFERENTIAL EQUATIONS BY SEPARATION OF VARIABLES 445

I

Since 5


dy
dx

+ 2 x=3 then

dy
dx

=

3 − 2 x
5

=

3
5


2 x
5

Hence y=


∫ (
3
5


2 x
5

)
dx

i.e. y=


3 x
5


x^2
5

+c,

which is the general solution.

Substituting the boundary conditionsy= 125 and
x=2 to evaluatecgives:


125 =^65 −^45 +c, from which,c= 1

Hence the particular solution isy=


3 x
5


x^2
5

+ 1.

Problem 4. Solve the equation

2 t

(
t−


dt

)
=5, givenθ=2 whent= 1.

Rearranging gives:


t−


dt

=

5
2 t

and


dt

=t−

5
2 t

Integrating gives:


θ=

∫ (
t−

5
2 t

)
dt

i.e. θ=


t^2
2


5
2

lnt+c,

which is the general solution.

Whenθ=2,t=1, thus 2=^12 −^52 ln 1+cfrom


which,c=^32.


Hence the particular solution is:


θ=

t^2
2


5
2

lnt+

3
2

i.e. θ=


1
2

(t^2 −5lnt+3)

Problem 5. The bending momentMof the

beam is given by

dM
dx

=−w(l−x), wherewand
xare constants. DetermineMin terms ofxgiven:
M=^12 wl^2 whenx= 0.

dM
dx

=−w(l−x)=−wl+wx

Integrating with respect toxgives:

M=−wlx+

wx^2
2

+c

which is the general solution.

WhenM=^12 wl^2 ,x=0.

Thus

1
2

wl^2 =−wl(0)+

w(0)^2
2

+c

from which,c=

1
2

wl^2.

Hence the particular solution is:

M=−wlx+

w(x)^2
2

+

1
2

wl^2

i.e. M=

1
2

w(l^2 −2lx+x^2 )

or M=

1
2

w(l−x)^2

Now try the following exercise.

Exercise 178 Further problems on equa-

tions of the form

dy
dx

=f(x).

In Problems 1 to 5, solve the differential
equations.

1.

dy
dx

=cos 4x− 2 x

[
y=

sin 4x
4

−x^2 +c

]


  1. 2x


dy
dx

= 3 −x^3

[
y=

3
2

lnx−

x^3
6

+c

]

3.

dy
dx

+x=3, giveny=2 whenx=1.
[
y= 3 x−

x^2
2


1
2

]


  1. 3


dy

+sinθ=0, giveny=

2
3

whenθ=

π

[^3
y=

1
3

cosθ+

1
2

]

5.

1
ex

+ 2 =x− 3

dy
dx

,giveny=1 whenx=0.
[
y=

1
6

(
x^2 − 4 x+

2
ex

+ 4

)]


  1. The gradient of a curve is given by:
    dy
    dx


+

x^2
2

= 3 x
Free download pdf