SOLUTION OF FIRST ORDER DIFFERENTIAL EQUATIONS BY SEPARATION OF VARIABLES 445I
Since 5
dy
dx+ 2 x=3 thendy
dx=3 − 2 x
5=3
5−2 x
5Hence y=
∫ (
3
5−2 x
5)
dxi.e. y=
3 x
5−x^2
5+c,which is the general solution.Substituting the boundary conditionsy= 125 and
x=2 to evaluatecgives:
125 =^65 −^45 +c, from which,c= 1Hence the particular solution isy=
3 x
5−x^2
5+ 1.Problem 4. Solve the equation2 t(
t−dθ
dt)
=5, givenθ=2 whent= 1.Rearranging gives:
t−dθ
dt=5
2 tanddθ
dt=t−5
2 tIntegrating gives:
θ=∫ (
t−5
2 t)
dti.e. θ=
t^2
2−5
2lnt+c,which is the general solution.Whenθ=2,t=1, thus 2=^12 −^52 ln 1+cfrom
which,c=^32.
Hence the particular solution is:
θ=t^2
2−5
2lnt+3
2i.e. θ=
1
2(t^2 −5lnt+3)Problem 5. The bending momentMof thebeam is given bydM
dx=−w(l−x), wherewand
xare constants. DetermineMin terms ofxgiven:
M=^12 wl^2 whenx= 0.dM
dx=−w(l−x)=−wl+wxIntegrating with respect toxgives:M=−wlx+wx^2
2+cwhich is the general solution.WhenM=^12 wl^2 ,x=0.Thus1
2wl^2 =−wl(0)+w(0)^2
2+cfrom which,c=1
2wl^2.Hence the particular solution is:M=−wlx+w(x)^2
2+1
2wl^2i.e. M=1
2w(l^2 −2lx+x^2 )or M=1
2w(l−x)^2Now try the following exercise.Exercise 178 Further problems on equa-tions of the formdy
dx=f(x).In Problems 1 to 5, solve the differential
equations.1.dy
dx=cos 4x− 2 x[
y=sin 4x
4−x^2 +c]- 2x
dy
dx= 3 −x^3[
y=3
2lnx−x^3
6+c]3.dy
dx+x=3, giveny=2 whenx=1.
[
y= 3 x−x^2
2−1
2]- 3
dy
dθ+sinθ=0, giveny=2
3whenθ=π[^3
y=1
3cosθ+1
2]5.1
ex+ 2 =x− 3dy
dx,giveny=1 whenx=0.
[
y=1
6(
x^2 − 4 x+2
ex+ 4)]- The gradient of a curve is given by:
dy
dx
+x^2
2= 3 x