SOLUTION OF FIRST ORDER DIFFERENTIAL EQUATIONS BY SEPARATION OF VARIABLES 445
I
Since 5
dy
dx
+ 2 x=3 then
dy
dx
=
3 − 2 x
5
=
3
5
−
2 x
5
Hence y=
∫ (
3
5
−
2 x
5
)
dx
i.e. y=
3 x
5
−
x^2
5
+c,
which is the general solution.
Substituting the boundary conditionsy= 125 and
x=2 to evaluatecgives:
125 =^65 −^45 +c, from which,c= 1
Hence the particular solution isy=
3 x
5
−
x^2
5
+ 1.
Problem 4. Solve the equation
2 t
(
t−
dθ
dt
)
=5, givenθ=2 whent= 1.
Rearranging gives:
t−
dθ
dt
=
5
2 t
and
dθ
dt
=t−
5
2 t
Integrating gives:
θ=
∫ (
t−
5
2 t
)
dt
i.e. θ=
t^2
2
−
5
2
lnt+c,
which is the general solution.
Whenθ=2,t=1, thus 2=^12 −^52 ln 1+cfrom
which,c=^32.
Hence the particular solution is:
θ=
t^2
2
−
5
2
lnt+
3
2
i.e. θ=
1
2
(t^2 −5lnt+3)
Problem 5. The bending momentMof the
beam is given by
dM
dx
=−w(l−x), wherewand
xare constants. DetermineMin terms ofxgiven:
M=^12 wl^2 whenx= 0.
dM
dx
=−w(l−x)=−wl+wx
Integrating with respect toxgives:
M=−wlx+
wx^2
2
+c
which is the general solution.
WhenM=^12 wl^2 ,x=0.
Thus
1
2
wl^2 =−wl(0)+
w(0)^2
2
+c
from which,c=
1
2
wl^2.
Hence the particular solution is:
M=−wlx+
w(x)^2
2
+
1
2
wl^2
i.e. M=
1
2
w(l^2 −2lx+x^2 )
or M=
1
2
w(l−x)^2
Now try the following exercise.
Exercise 178 Further problems on equa-
tions of the form
dy
dx
=f(x).
In Problems 1 to 5, solve the differential
equations.
1.
dy
dx
=cos 4x− 2 x
[
y=
sin 4x
4
−x^2 +c
]
- 2x
dy
dx
= 3 −x^3
[
y=
3
2
lnx−
x^3
6
+c
]
3.
dy
dx
+x=3, giveny=2 whenx=1.
[
y= 3 x−
x^2
2
−
1
2
]
- 3
dy
dθ
+sinθ=0, giveny=
2
3
whenθ=
π
[^3
y=
1
3
cosθ+
1
2
]
5.
1
ex
+ 2 =x− 3
dy
dx
,giveny=1 whenx=0.
[
y=
1
6
(
x^2 − 4 x+
2
ex
+ 4
)]
- The gradient of a curve is given by:
dy
dx
+
x^2
2
= 3 x