456 DIFFERENTIAL EQUATIONS
equation. Given boundary conditions, the par-
ticular solution may be determined.
48.3 Worked problems on linear first
order differential equations
Problem 1. Solve
1
x
dy
dx
+ 4 y=2 given the
boundary conditionsx=0 wheny=4.
Using the above procedure:
(i) Rearranging gives
dy
dx
+ 4 xy= 2 x, which is
of the form
dy
dx
+Py=QwhereP= 4 xand
Q= 2 x.
(ii)
∫
Pdx=
∫
4 xdx= 2 x^2.
(iii) Integrating factor e
∫
Pdx=e 2 x^2.
(iv) Substituting into equation (3) gives:
ye^2 x
2
=
∫
e^2 x
2
(2x)dx
(v) Hence the general solution is:
ye^2 x
2
=^12 e^2 x
2
+c,
by using the substitutionu= 2 x^2 Whenx=0,
y=4, thus 4e^0 =^12 e^0 +c, from which,c=^72.
Hence the particular solution is
ye^2 x
2
=^12 e^2 x
2
+^72
ory=^12 +^72 e−^2 x
2
ory=^12
(
1 +7e−^2 x
2 )
Problem 2. Show that the solution of the equa-
tion
dy
dx
+ 1 =−
y
x
is given byy=
3 −x^2
2 x
,given
x=1 wheny=1.
Using the procedure of Section 48.2:
(i) Rearranging gives:
dy
dx
+
(
1
x
)
y=−1, which
is of the form
dy
dx
+Py=Q, whereP=
1
x
and
Q=−1. (Note thatQcan be considered to be
− 1 x^0 , i.e. a function ofx).
(ii)
∫
Pdx=
∫
1
x
dx=lnx.
(iii) Integrating factor e
∫
Pdx=elnx=x(from the
definition of logarithm).
(iv) Substituting into equation (3) gives:
yx=
∫
x(−1) dx
(v) Hence the general solution is:
yx=
−x^2
2
+c
When x=1, y=1, thus 1=
− 1
2
+c, from
which,c=
3
2
Hence the particular solution is:
yx=
−x^2
2
+
3
2
i.e. 2yx= 3 −x^2 andy=
3 −x^2
2 x
Problem 3. Determine the particular solution
of
dy
dx
−x+y=0, given thatx=0 wheny=2.
Using the procedure of Section 48.2:
(i) Rearranging gives
dy
dx
+y=x, which is of the
form
dy
dx
+P,=Q, whereP=1 andQ=x. (In
this casePcan be considered to be 1x^0 , i.e. a
function ofx).
(ii)
∫
Pdx=
∫
1dx=x.
(iii) Integrating factor e
∫
Pdx=ex.
(iv) Substituting in equation (3) gives:
yex=
∫
ex(x)dx (4)
(v)
∫
ex(x)dxis determined using integration by
parts (see Chapter 43).
∫
xexdx=xex−ex+c