458 DIFFERENTIAL EQUATIONS
Whenx=−1,
− 6 =− 3 A, from which,A= 2
Whenx=2,
3 = 3 B, from which,B= 1
Hence
∫
3 x− 3
(x+1)(x−2)
dx
=
∫ [
2
x+ 1
+
1
x− 2
]
dx
=2ln(x+1)+ln(x−2)
=ln[(x+1)^2 (x−2)]
(iii) Integrating factor
e
∫
Pdx=eln [(x+1)^2 (x−2)]=(x+1) (^2) (x−2)
(iv) Substituting in equation (3) gives:
y(x+1)^2 (x−2)
∫
(x+1)^2 (x−2)
1
x− 2
dx
∫
(x+1)^2 dx
(v)Hence the general solution is:
y(x+1)^2 (x−2)=^13 (x+1)^3 +c
(b) Whenx=−1,y=5 thus 5(0)(−3)= 0 +c, from
which,c=0.
Hencey(x+1)^2 (x−2)=^13 (x+1)^3
i.e.y=
(x+1)^3
3(x+1)^2 (x−2)
and hencethe particular solution is
y=
(x+ 1 )
3 (x− 2 )
Now try the following exercise.
Exercise 184 Further problems on linear
first order differential equations
In problems 1 and 2, solve the differential
equations
- cotx
dy
dx
= 1 − 2 y,giveny=1 whenx=
π
4
.
[y=^12 +cos^2 x]
2.t
dθ
dt
+sect(tsint+cost)θ=sect,given
t=πwhenθ=1.
[
θ=
1
t
(sint−πcost)
]
- Given the equationx
dy
dx
=
2
x+ 2
−yshow
that the particular solution isy=
2
x
ln(x+2),
given the boundary conditions thatx=− 1
wheny=0.
- Show that the solution of the differential
equation
dy
dx
−2(x+1)^3 =
4
(x+1)
y
is y=(x+1)^4 ln(x+1)^2 , given thatx= 0
wheny=0.
- Show that the solution of the differential
equation
dy
dx
+ky=asinbx
is given by:
y=
(
a
k^2 +b^2
)
(ksinbx−bcosbx)
+
(
k^2 +b^2 +ab
k^2 +b^2
)
e−kx,
giveny=1 whenx=0.
- The equation
dv
dt
=−(av+bt), whereaand
bare constants, represents an equation of
motion when a particle moves in a resisting
medium. Solve the equation forvgiven that
v=uwhent=0.
[
v=
b
a^2
−
bt
a
+
(
u−
b
a^2
)
e−at
]
- In an alternating current circuit containing
resistanceRand inductanceLthe currentiis
given by:Ri+L
di
dt
=E 0 sinωt.Giveni= 0
whent=0, show that the solution of the
equation is given by:
i=
(
E 0
R^2 +ω^2 L^2
)
(Rsinωt−ωLcosωt)
+
(
E 0 ωL
R^2 +ω^2 L^2
)
e−Rt/L