SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 483I
(ii) Substituting m for D gives the auxil-
iary equationm^2 − 3 m=0. Factorising gives:
m(m−3)=0, from which,m=0orm=3.(iii) Since the roots are real and different, the C.F.,
u=Ae^0 +Be^3 x, i.e.u=A+Be^3 x.(iv) Since the C.F. contains a constant (i.e.A) then
let the P.I.,v=kx(see Table 51.1(a)).
(v) Substitutingv=kxinto (D^2 −3D)v=9gives
(D^2 −3D)kx=9.
D(kx)=kand D^2 (kx)=0.
Hence (D^2 −3D)kx= 0 − 3 k=9, from which,
k=−3.
Hence the P.I.,v=− 3 x.(vi) The general solution is given byy=u+v, i.e.
y=A+Be^3 x− 3 x.(vii) Whenx=0,y=0, thus 0=A+Be^0 −0, i.e.
0 =A+B (1)
dy
dx
= 3 Be^3 x−3;dy
dx=0 when x=0, thus0 = 3 Be^0 −3 from which,B=1. From equa-
tion (1),A=−1.
Hence the particular solution isy=− 1 +1e^3 x− 3 x,
i.e. y=e^3 x− 3 x− 1Problem 3. Solve the differential equation2d^2 y
dx^2− 11dy
dx+ 12 y= 3 x−2.Using the procedure of Section 51.2:(i) 2d^2 y
dx^2− 11dy
dx+ 12 y= 3 x−2 in D-operator
form is(2D^2 −11D+12)y= 3 x− 2.(ii) Substitutingmfor D gives the auxiliary equa-
tion 2m^2 − 11 m+ 12 =0. Factorising gives:
(2m−3)(m−4)=0, from which, m=^32 or
m=4.(iii) Since the roots are real and different, the C.F.,u=Ae3
2 x+Be^4 x(iv) Sincef(x)= 3 x−2 is a polynomial, let the P.I.,
v=ax+b(see Table 51.1(b)).
(v) Substitutingv=ax+binto(2D^2 −11D+12)v= 3 x−2 gives:(2D^2 −11D+12)(ax+b)= 3 x−2,
i.e.2D^2 (ax+b)−11D(ax+b)
+12(ax+b)= 3 x− 2
i.e. 0 − 11 a+ 12 ax+ 12 b= 3 x− 2
Equating the coefficients ofxgives: 12a=3,
from which,a=^14.Equating the constant terms gives:
− 11 a+ 12 b=−2.
i.e.− 11( 1
4)
+ 12 b=−2 from which,12 b=− 2 +11
4=3
4i.e.b=1
16Hence the P.I.,v=ax+b=1
4x+1
16
(vi) The general solution is given byy=u+v, i.e.y=Ae3
2 x+Be^4 x+1
4x+1
16Now try the following exercise.Exercise 190 Further problems on differen-
tial equations of the formad^2 y
dx^2+bdy
dx+cy=f(x) wheref(x) is a
constant or polynomial.In Problems 1 and 2, find the general solutions
of the given differential equations.- 2
d^2 y
dx^2+ 5dy
dx− 3 y= 6
[
y=Ae1
2 x+Be−^3 x− 2]- 6
d^2 y
dx^2+ 4dy
dx− 2 y= 3 x− 2
[
y=Ae1
3 x+Be−x− 2 −^32 x]In Problems 3 and 4 find the particular solutions
of the given differential equations.- 3
d^2 y
dx^2+dy
dx− 4 y=8; whenx=0,y=0 and
dy
dx=0.
[
y=^27 (3e−4
3 x+4ex)− 2]