Higher Engineering Mathematics

(Greg DeLong) #1

494 DIFFERENTIAL EQUATIONS


Differentiating each term ofx^2 y′′+ 2 xy′+y= 0
ntimes, using Leibniz’s theorem of equation (13),
gives:
{
y(n+2)x^2 +ny(n+1)(2x)+


n(n−1)
2!

y(n)(2)+ 0

}

+{y(n+1)(2x)+ny(n)(2)+ 0 }+{y(n)}= 0

i.e. x^2 y(n+2)+ 2 nxy(n+1)+n(n−1)y(n)


+ 2 xy(n+1)+ 2 ny(n)+y(n)= 0

i.e. x^2 y(n+2)+2(n+1)xy(n+1)


+(n^2 −n+ 2 n+1)y(n)= 0

or x^2 y(n+2)+ 2 (n+ 1 )xy(n+1)


+(n^2 +n+1)y(n)= 0

Problem 3. Differentiate the following
differential equationntimes:
(1+x^2 )y′′+ 2 xy′− 3 y= 0

By Leibniz’s equation, equation (13),
{


y(n+2)(1+x^2 )+ny(n+1)(2x)+

n(n−1)
2!

y(n)(2)+ 0

}

+ 2 {y(n+1)(x)+ny(n)(1)+ 0 }− 3 {y(n)}= 0

i.e. (1+x^2 )y(n+2)+ 2 nxy(n+1)+n(n−1)y(n)


+ 2 xy(n+1)+ 2 ny(n)− 3 y(n)= 0

or (1+x^2 )y(n+2)+2(n+1)xy(n+1)

+(n^2 −n+ 2 n−3)y(n)= 0

i.e. ( 1 +x^2 )y(n+2)+2(n+1)xy(n+1)


+(n^2 +n−3)y(n)= 0

Problem 4. Find the 5th derivative of
y=x^4 sinx

Ify=x^4 sinx, then using Leibniz’s equation with


u=sinxandv=x^4 gives:


y(n)=

[
sin

(
x+


2

)
x^4

]

+n

[
sin

(
x+

(n−1)π
2

)
4 x^3

]

+

n(n−1)
2!

[
sin

(
x+

(n−2)π
2

)
12 x^2

]

+

n(n−1)(n−2)
3!

[
sin

(
x+

(n−3)π
2

)
24 x

]

+

n(n−1)(n−2)(n−3)
4!

[
sin

(
x

+

(n−4)π
2

)
24

]

and y(5)=x^4 sin

(
x+

5 π
2

)
+ 20 x^3 sin (x+ 2 π)

+

(5)(4)
2

(12x^2 ) sin

(
x+

3 π
2

)

+

(5)(4)(3)
(3)(2)

(24x) sin(x+π)

+

(5)(4)(3)(2)
(4)(3)(2)

(24) sin

(
x+

π
2

)

Since sin

(
x+

5 π
2

)
≡sin

(
x+

π
2

)
≡cosx,

sin(x+ 2 π)≡sinx, sin

(
x+

3 π
2

)
≡−cosx,

and sin (x+π)≡−sinx,

then y(5)=x^4 cosx+ 20 x^3 sinx+ 120 x^2 (−cosx)
+ 240 x(−sinx)+120 cosx

i.e. y(^5 )=(x^4 − 120 x^2 + 120 )cosx
+( 20 x^3 − 240 x)sinx

Now try the following exercise.

Exercise 195 Further problems on Leibniz’s
theorem

Use the theorem of Leibniz in the following
problems:


  1. Obtain then’th derivative of:x^2 y
    [
    x^2 y(n)+ 2 nxy(n−1)+n(n−1)y(n−2)


]


  1. Ify=x^3 e^2 xfindy(n)and hencey(3).




y(n)=e^2 x 2 n−^3 { 8 x^3 + 12 nx^2
+n(n−1)(6x)+n(n−1)(n−2)}
y(3)=e^2 x(8x^3 + 36 x^2 + 36 x+6)



Free download pdf