500 DIFFERENTIAL EQUATIONS
Leta 0 =Ain equation (21), anda 0 =Bin equation
(22). Also, if the first solution is denoted byu(x) and
the second byv(x), then the general solution of the
given differential equation isy=u(x)+v(x). Hence,
y=A
{
1 +x+
x^2
( 2 × 4 )
+
x^3
( 2 × 3 )( 4 × 7 )
+
x^4
( 2 × 3 × 4 )( 4 × 7 × 10 )
+···
}
+Bx
2
3
{
1 +
x
5
+
x^2
( 2 × 5 × 8 )
+
x^3
( 2 × 3 )( 5 × 8 × 11 )
+
x^4
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 )
+···
}
Problem 8. Use the Frobenius method to
determine the general power series solution of
the differential equation:
2 x^2
d^2 y
dx^2
−x
dy
dx
+(1−x)y= 0
The differential equation may be rewritten as:
2 x^2 y′′−xy′+(1−x)y= 0
(i) Let a trial solution be of the form
y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···} (23)
wherea 0 =0,
i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+··· (24)
(ii) Differentiating equation (24) gives:
y′=a 0 cxc−^1 +a 1 (c+1)xc+a 2 (c+2)xc+^1
+ ···+ar(c+r)xc+r−^1 +···
andy′′=a 0 c(c−1)xc−^2 +a 1 c(c+1)xc−^1
+a 2 (c+1)(c+2)xc+···
+ar(c+r−1)(c+r)xc+r−^2 +···
(iii) Substituting y,y′ andy′′into each term of
the given equation 2x^2 y′′−xy′+(1−x)y= 0
gives:
2 x^2 y′′= 2 a 0 c(c−1)xc+ 2 a 1 c(c+1)xc+^1
+ 2 a 2 (c+1)(c+2)xc+^2 +···
+ 2 ar(c+r−1)(c+r)xc+r+···
(a)
−xy′=−a 0 cxc−a 1 (c+1)xc+^1
−a 2 (c+2)xc+^2 −···
−ar(c+r)xc+r−··· (b)
(1−x)y=(1−x)(a 0 xc+a 1 xc+^1 +a 2 xc+^2
+a 3 xc+^3 +···+arxc+r+···)
=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+···
−a 0 xc+^1 −a 1 xc+^2 −a 2 xc+^3
−a 3 xc+^4 −···−arxc+r+^1 −···
(c)
(iv) Theindicial equation, which is obtained by
equating the coefficient of the lowest power of
xto zero, gives the value(s) ofc. Equating the
total coefficients ofxc(from equations (a) to
(c)) to zero gives:
2 a 0 c(c−1)−a 0 c+a 0 = 0
i.e. a 0 [2c(c−1)−c+1]= 0
i.e. a 0 [2c^2 − 2 c−c+1]= 0
i.e. a 0 [2c^2 − 3 c+1]= 0
i.e. a 0 [(2c−1)(c−1)]= 0
from which, c= 1 orc=
1
2
The coefficient of the general term, i.e.xc+r,
gives (from equations (a) to (c)):
2 ar(c+r−1)(c+r)−ar(c+r)
+ar−ar− 1 = 0
from which,
ar[2(c+r−1)(c+r)−(c+r)+1]=ar− 1
andar=
ar− 1
2(c+r−1)(c+r)−(c+r)+ 1
(25)
(a) Withc= 1 ,ar=
ar− 1
2(r)(1+r)−(1+r)+ 1
=
ar− 1
2 r+ 2 r^2 − 1 −r+ 1
=
ar− 1
2 r^2 +r
=
ar− 1
r(2r+1)