POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 507I
=−a 2
23 (v+2)=− 1
23 (v+2)− 1
2 v+^2 (v+2)=1
2 v+^4 (2!)(v+3)since (v+2)(v+2)=(v+3)and a 6 =
− 1
2 v+^6 (3!)(v+4)and so on.Therecurrence relationis:
ar=(−1)r/^22 v+r(r2!)
(
v+r
2+ 1)And if we letr= 2 k, then
a 2 k=(−1)k
2 v+^2 k(k!)(v+k+1)(42)fork=1, 2, 3,···Hence, it is possible to write the new form for
equation (38) as:
y=Axv{
1
2 v(v+1)−x^2
2 v+^2 (1!)(v+2)+x^4
2 v+^4 (2!)(v+3)−···}This is calledthe Bessel function of the first order
kind, of orderv,and is denoted byJv(x),
i.e. Jv(x)=
(x2)v{ 1(v+1)−x^2
22 ( 1 !)(v+2)+x^4
24 ( 2 !)(v+ 3 )−···}providedvis not a negative integer.For the second solution,whenc=−v, replacingv
by−vin equation (42) above gives:
a 2 k=(−1)k
22 k−v(k!)(k−v+1)from which, when k=0,a 0 =
(− 1 )^0
2 −v(0!)(1−v)=
1
2 −v(1−v)since 0!=1 (see page 492)whenk=1,a 2 =(−1)^1
22 −v( 1 !)(1−v+1)=− 1
22 −v(1!)(2−v)whenk=2,a 4 =(−1)^2
24 −v(2!)(2−v+1)=1
24 −v(2!)(3−v)whenk=3,a 6 =(−1)^3
26 −v( 3 !)(3−v+1)=1
26 −v(3!)(4−v)and so on.Hence,y=Bx−v{
1
2 −v(1−v)−x^2
22 −v(1!)(2−v)+x^4
24 −v(2!)(3−v)−···}i.e. J−v(x)=(x2)−v{ 1( 1 −v)−x^2
22 ( 1 !)( 2 −v)+x^4
24 ( 2 !)( 3 −v)−···}providedvis not a positive integer.Jv(x) andJ−v(x) are two independent solutions of
the Bessel equation; the complete solution is:
y=AJv(x)+BJ−v(x) whereAandBare constantsi.e. y=AJv(x)+BJ−v(x)=A(x2)v{ 1(v+ 1 )−x^2
22 ( 1 !)(v+ 2 )+x^4
24 ( 2 !)(v+ 4 )−···}+B(x2)−v{ 1( 1 −v)−x^2
22 ( 1 !)( 2 −v)+x^4
24 ( 2 !)( 3 −v)−···}In general terms:Jv(x)=(x2)v∑∞k= 0(−1)kx^2 k
22 k(k!)(v+k+1)and J−v(x)=(x2)−v∑∞k= 0(−1)kx^2 k
22 k(k!)(k−v+1)