POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 509
I
- Evaluate the Bessel functionsJ 0 (x) andJ 1 (x)
whenx=1, correct to 3 decimal places.
[J 0 (x)= 0 .765,J 1 (x)= 0 .440]
52.7 Legendre’s equation and
Legendre polynomials
Another important differential equation in physics
and engineering applications is Legendre’s equation
of the form: (1−x^2 )
d^2 y
dx^2
− 2 x
dy
dx
+k(k+1)y=0or
(1−x^2 )y′′− 2 xy′+k(k+1)y=0 wherekis a real
constant.
Problem 12. Determine the general power
series solution of Legendre’s equation.
To solve Legendre’s equation
(1−x^2 )y′′− 2 xy′+k(k+1)y=0 using the Frobenius
method:
(i) Let a trial solution be of the form
y=xc
{
a 0 +a 1 x+a 2 x^2 +a 3 x^3
+···+arxr+···
}
(43)
wherea 0 =0,
i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+···+arxc+r+··· (44)
(ii) Differentiating equation (44) gives:
y′=a 0 cxc−^1 +a 1 (c+1)xc
+a 2 (c+2)xc+^1 +···
+ar(c+r)xc+r−^1 +···
andy′′=a 0 c(c−1)xc−^2 +a 1 c(c+1)xc−^1
+a 2 (c+1)(c+2)xc+···
+ar(c+r−1)(c+r)xc+r−^2 +···
(iii) Substitutingy,y′andy′′into each term of the
given equation:(
1 −x^2
)
y′′− 2 xy′+k(k+1)y=0 gives:
a 0 c(c−1)xc−^2 +a 1 c(c+1)xc−^1
+a 2 (c+1)(c+2)xc+···
+ar(c+r−1)(c+r)xc+r−^2 +···
−a 0 c(c−1)xc−a 1 c(c+1)xc+^1
−a 2 (c+1)(c+2)xc+^2 −···
−ar(c+r−1)(c+r)xc+r−···− 2 a 0 cxc
− 2 a 1 (c+1)xc+^1 − 2 a 2 (c+2)xc+^2 −···
− 2 ar(c+r)xc+r−···+k^2 a 0 xc
+k^2 a 1 xc+^1 +k^2 a 2 xc+^2 +···+k^2 arxc+r
+ ···+ka 0 xc+ka 1 xc+^1 +···
+karxc+r+··· = 0 (45)
(iv) Theindicial equationis obtained by equat-
ing the coefficient of the lowest power ofx
(i.e.xc−^2 ) to zero. Hence,a 0 c(c−1)=0 from
which,c= 0 orc= 1 sincea 0 =0.
For the term in xc−^1 , i.e. a 1 c(c+1)= 0
Withc=1,a 1 =0; however, whenc=0,a 1 is
indeterminate, since any value ofa 1 combined
with the zero value ofcwould make the product
zero.
For the term inxc+r,
ar+ 2 (c+r+1)(c+r+2)−ar(c+r−1)
(c+r)− 2 ar(c+r)+k^2 ar+kar= 0
from which,
ar+ 2 =
ar
[
(c+r−1)(c+r)+2(c+r)−k^2 −k
]
(c+r+1)(c+r+2)
=
ar[(c+r)(c+r+1)−k(k+1)]
(c+r+1)(c+r+2) (46)
Whenc= 0 ,
ar+ 2 =
ar[r(r+1)−k(k+1)]
(r+1)(r+2)
Forr=0,
a 2 =
a 0 [−k(k+1)]
(1)(2)
Forr=1,
a 3 =
a 1 [(1)(2)−k(k+1)]
(2)(3)
=
−a 1 [k^2 +k−2]
3!
=
−a 1 (k−1)(k+2)
3!
Forr=2,
a 4 =
a 2 [(2)(3)−k(k+1)]
(3)(4)
=
−a 2
[
k^2 +k− 6
]
(3)(4)