POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 511
I
Rodrigue’s formula
An alternative method of determining Legendre
polynomials is by usingRodrigue’s formula, which
states:
Pn(x)=
1
2 nn!
dn
(
x^2 − 1
)n
dxn
(48)
This is demonstrated in the following worked
problems.
Problem 15. Determine the Legendre polyno-
mialP 2 (x) using Rodrigue’s formula.
In Rodrigue’s formula, Pn(x)=
1
2 nn!
dn
(
x^2 − 1
)n
dxn
and whenn=2,
P 2 (x)=
1
222!
d^2 (x^2 −1)^2
dx^2
=
1
23
d^2 (x^4 − 2 x^2 +1)
dx^2
d
dx
(x^4 − 2 x^2 +1)
= 4 x^3 − 4 x
and
d^2
(
x^4 − 2 x^2 + 1
)
dx^2
=
d(4x^3 − 4 x)
dx
= 12 x^2 − 4
Hence, P 2 (x)=
1
23
d^2
(
x^4 − 2 x^2 + 1
)
dx^2
=
1
8
(
12 x^2 − 4
)
i.e. P 2 (x)=
1
2
(
3 x^2 − 1
)
the same as in Problem 13.
Problem 16. Determine the Legendre polyno-
mialP 3 (x) using Rodrigue’s formula.
In Rodrigue’s formula,Pn(x) =
1
2 nn!
dn
(
x^2 − 1
)n
dxn
and whenn=3,
P 3 (x)=
1
233!
d^3
(
x^2 − 1
) 3
dx^3
=
1
23 (6)
d^3
(
x^2 − 1
)(
x^4 − 2 x^2 + 1
)
dx^3
=
1
(8)(6)
d^3
(
x^6 − 3 x^4 + 3 x^2 − 1
)
dx^3
d
(
x^6 − 3 x^4 + 3 x^2 − 1
)
dx
= 6 x^5 − 12 x^3 + 6 x
d
(
6 x^5 − 12 x^3 + 6 x
)
dx
= 30 x^4 − 36 x^2 + 6
and
d
(
30 x^4 − 36 x^2 + 6
)
dx
= 120 x^3 − 72 x
Hence,P 3 (x)=
1
(8)(6)
d^3
(
x^6 − 3 x^4 + 3 x^2 − 1
)
dx^3
=
1
(8)(6)
(
120 x^3 − 72 x
)
=
1
8
(
20 x^3 − 12 x
)
i.e. P 3 (x)=
1
2
(
5 x^3 − 3 x
)
the same as in Prob-
lem 14.
Now try the following exercise.
Exercise 199 Legendre’s equation and
Legendre polynomials
- Determine the power series solution of
the Legendre equation:(
1 −x^2
)
y′′− 2 xy′+k(k+1)y= 0 when
(a)k=0 (b)k=2, up to and including the
term inx^5.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a)y=a 0 +a 1
(
x+
x^3
3
+
x^5
5
+···
)
(b)y=a 0
{
1 − 3 x^2
}
+a 1
{
x−
2
3
x^3 −
1
5
x^5
}
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Find the following Legendre polynomials:
(a)P 1 (x) (b)P 4 (x) (c)P 5 (x)
⎡
⎢
⎣
(a)x (b)
1
8
(
35 x^4 − 30 x^2 + 3
)
(c)
1
8
(
63 x^5 − 70 x^3 + 15 x
)
⎤
⎥
⎦