AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 517
I
ButX=0atx=0, hence 0=A+Bi.e.B=−Aand
X=0atx=L, hence
0 =AepL+Be−pL=A(epL−e−pL).
Assuming (epL–e−pL) is not zero, thenA=0 and
sinceB=−A, thenB=0 also.
This corresponds to the string being stationary; since
it is non-oscillatory, this solution will be disregarded.
Case 2:μ= 0
In this case, sinceμ=p^2 =0,T′′=0 andX′′=0.
We will assume thatT(t)=0. SinceX′′=0,X′=a
andX=ax+bwhereaandbare constants. But
X=0atx=0, henceb=0 andX=axandX= 0
atx=L, hencea=0. Thus, again, the solution is
non-oscillatory and is also disregarded.
Case 3:μ< 0
For convenience,
letμ=−p^2 thenX′′+p^2 X= 0 from which,
X=Acospx+Bsinpx (1)
andT′′+c^2 p^2 T= 0 from which,
T=Ccoscpt+Dsincpt (2)
(see worked Problem 4 above).
Thus, the suggested solutionu=XTnow becomes:
u={Acospx+Bsinpx}{Ccoscpt+Dsincpt}
(3)
Applying the boundary conditions:
(i)u=0 when x=0 for all values oft,
thus 0={Acos 0+Bsin 0}{Ccoscpt
+Dsincpt}
i.e. 0 =A{Ccoscpt+Dsincpt}
from which,A=0, (since{Ccoscpt
+Dsincpt} =0)
Hence, u={Bsinpx}{Ccoscpt
+Dsincpt} (4)
(ii)u=0 whenx=Lfor all values oft
Hence, 0={BsinpL}{Ccoscpt+Dsincpt}
NowB=0oru(x,t) would be identically zero.
Thus sinpL=0 i.e. pL=nπ or p=
nπ
L
for
integer values ofn.
Substituting in equation (4) gives:
u=
{
Bsin
nπx
L
}{
Ccos
cnπt
L
+Dsin
cnπt
L
}
i.e. u=sin
nπx
L
{
Ancos
cnπt
L
+Bnsin
cnπt
L
}
(where constantAn=BCandBn=BD). There
will be many solutions, depending on the value
ofn. Thus, more generally,
un(x,t)=
∑∞
n= 1
{
sin
nπx
L
(
Ancos
cnπt
L
+Bnsin
cnπt
L
)}
(5)
To findAnandBnwe put in the initial conditions
not yet taken into account.
(i) Att=0,u(x,0)=f(x) for 0≤x≤L
Hence, from equation (5),
u(x,0)=f(x)=
∑∞
n= 1
{
Ansin
nπx
L
}
(6)
(ii) Also att=0,
[
∂u
∂t
]
t= 0
=g(x) for 0≤x≤L
Differentiating equation (5) with respect tot
gives:
∂u
∂t
=
∑∞
n= 1
{
sin
nπx
L
(
An
(
−
cnπ
L
sin
cnπt
L
)
+Bn
(
cnπ
L
cos
cnπt
L
))}
and whent=0,
g(x)=
∑∞
n= 1
{
sin
nπx
L
Bn
cnπ
L
}
i.e. g(x)=
cπ
L
∑∞
n= 1
{
Bnnsin
nπx
L
}
(7)
From Fourier series (see page 684) it may be shown
that:
Anis twice the mean value off(x) sin
nπx
L
between
x=0 andx=L
i.e. An=
2
L
∫L
0
f(x)sin
nπx
L
dx
forn=1, 2, 3,... (8)