AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 517I
ButX=0atx=0, hence 0=A+Bi.e.B=−Aand
X=0atx=L, hence
0 =AepL+Be−pL=A(epL−e−pL).
Assuming (epL–e−pL) is not zero, thenA=0 and
sinceB=−A, thenB=0 also.
This corresponds to the string being stationary; since
it is non-oscillatory, this solution will be disregarded.Case 2:μ= 0In this case, sinceμ=p^2 =0,T′′=0 andX′′=0.
We will assume thatT(t)=0. SinceX′′=0,X′=a
andX=ax+bwhereaandbare constants. But
X=0atx=0, henceb=0 andX=axandX= 0
atx=L, hencea=0. Thus, again, the solution is
non-oscillatory and is also disregarded.Case 3:μ< 0For convenience,
letμ=−p^2 thenX′′+p^2 X= 0 from which,X=Acospx+Bsinpx (1)andT′′+c^2 p^2 T= 0 from which,T=Ccoscpt+Dsincpt (2)(see worked Problem 4 above).Thus, the suggested solutionu=XTnow becomes:u={Acospx+Bsinpx}{Ccoscpt+Dsincpt}
(3)
Applying the boundary conditions:(i)u=0 when x=0 for all values oft,
thus 0={Acos 0+Bsin 0}{Ccoscpt
+Dsincpt}
i.e. 0 =A{Ccoscpt+Dsincpt}
from which,A=0, (since{Ccoscpt
+Dsincpt} =0)
Hence, u={Bsinpx}{Ccoscpt
+Dsincpt} (4)(ii)u=0 whenx=Lfor all values oft
Hence, 0={BsinpL}{Ccoscpt+Dsincpt}
NowB=0oru(x,t) would be identically zero.
Thus sinpL=0 i.e. pL=nπ or p=nπ
Lfor
integer values ofn.Substituting in equation (4) gives:u={
Bsinnπx
L}{
Ccoscnπt
L+Dsincnπt
L}i.e. u=sinnπx
L{
Ancoscnπt
L+Bnsincnπt
L}(where constantAn=BCandBn=BD). There
will be many solutions, depending on the value
ofn. Thus, more generally,un(x,t)=∑∞n= 1{
sinnπx
L(
Ancoscnπt
L+Bnsincnπt
L)}(5)
To findAnandBnwe put in the initial conditions
not yet taken into account.
(i) Att=0,u(x,0)=f(x) for 0≤x≤L
Hence, from equation (5),u(x,0)=f(x)=∑∞n= 1{
Ansinnπx
L}
(6)(ii) Also att=0,[
∂u
∂t]t= 0=g(x) for 0≤x≤LDifferentiating equation (5) with respect tot
gives:∂u
∂t=∑∞n= 1{
sinnπx
L(
An(
−cnπ
Lsincnπt
L)+Bn(
cnπ
Lcoscnπt
L))}and whent=0,g(x)=∑∞n= 1{
sinnπx
LBncnπ
L}i.e. g(x)=cπ
L∑∞n= 1{
Bnnsinnπx
L}
(7)From Fourier series (see page 684) it may be shown
that:
Anis twice the mean value off(x) sinnπx
Lbetween
x=0 andx=Li.e. An=2
L∫L0f(x)sinnπx
Ldxforn=1, 2, 3,... (8)