Higher Engineering Mathematics

(Greg DeLong) #1
AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 517

I

ButX=0atx=0, hence 0=A+Bi.e.B=−Aand
X=0atx=L, hence
0 =AepL+Be−pL=A(epL−e−pL).
Assuming (epL–e−pL) is not zero, thenA=0 and
sinceB=−A, thenB=0 also.
This corresponds to the string being stationary; since
it is non-oscillatory, this solution will be disregarded.

Case 2:μ= 0

In this case, sinceμ=p^2 =0,T′′=0 andX′′=0.
We will assume thatT(t)=0. SinceX′′=0,X′=a
andX=ax+bwhereaandbare constants. But
X=0atx=0, henceb=0 andX=axandX= 0
atx=L, hencea=0. Thus, again, the solution is
non-oscillatory and is also disregarded.

Case 3:μ< 0

For convenience,
letμ=−p^2 thenX′′+p^2 X= 0 from which,

X=Acospx+Bsinpx (1)

andT′′+c^2 p^2 T= 0 from which,

T=Ccoscpt+Dsincpt (2)

(see worked Problem 4 above).

Thus, the suggested solutionu=XTnow becomes:

u={Acospx+Bsinpx}{Ccoscpt+Dsincpt}
(3)
Applying the boundary conditions:

(i)u=0 when x=0 for all values oft,
thus 0={Acos 0+Bsin 0}{Ccoscpt
+Dsincpt}
i.e. 0 =A{Ccoscpt+Dsincpt}
from which,A=0, (since{Ccoscpt
+Dsincpt} =0)
Hence, u={Bsinpx}{Ccoscpt
+Dsincpt} (4)

(ii)u=0 whenx=Lfor all values oft


Hence, 0={BsinpL}{Ccoscpt+Dsincpt}
NowB=0oru(x,t) would be identically zero.
Thus sinpL=0 i.e. pL=nπ or p=


L

for
integer values ofn.

Substituting in equation (4) gives:

u=

{
Bsin

nπx
L

}{
Ccos

cnπt
L

+Dsin

cnπt
L

}

i.e. u=sin

nπx
L

{
Ancos

cnπt
L

+Bnsin

cnπt
L

}

(where constantAn=BCandBn=BD). There
will be many solutions, depending on the value
ofn. Thus, more generally,

un(x,t)=

∑∞

n= 1

{
sin

nπx
L

(
Ancos

cnπt
L

+Bnsin

cnπt
L

)}

(5)
To findAnandBnwe put in the initial conditions
not yet taken into account.
(i) Att=0,u(x,0)=f(x) for 0≤x≤L
Hence, from equation (5),

u(x,0)=f(x)=

∑∞

n= 1

{
Ansin

nπx
L

}
(6)

(ii) Also att=0,

[
∂u
∂t

]

t= 0

=g(x) for 0≤x≤L

Differentiating equation (5) with respect tot
gives:

∂u
∂t

=

∑∞

n= 1

{
sin

nπx
L

(
An

(

cnπ
L

sin

cnπt
L

)

+Bn

(
cnπ
L

cos

cnπt
L

))}

and whent=0,

g(x)=

∑∞

n= 1

{
sin

nπx
L

Bn

cnπ
L

}

i.e. g(x)=


L

∑∞

n= 1

{
Bnnsin

nπx
L

}
(7)

From Fourier series (see page 684) it may be shown
that:
Anis twice the mean value off(x) sin

nπx
L

between
x=0 andx=L

i.e. An=

2
L

∫L

0

f(x)sin

nπx
L

dx

forn=1, 2, 3,... (8)
Free download pdf