INVERSE LAPLACE TRANSFORMS 639K
Problem 2. Find the following inverse Laplace
transforms:(a)L−^1{
6
s^3}
(b) L−^1{
3
s^4}(a) From (vii) of Table 66.1,L−^1{
2
s^3}
=t^2HenceL−^1{
6
s^3}
= 3 L−^1{
2
s^3}
= 3 t^2.(b) From (viii) of Table 66.1, ifsis to have a power
of 4 thenn=3.Thus L−^1{
3!
s^4}
=t^3 i.e.L−^1{
6
s^4}
=t^3Hence L−^1{
3
s^4}
=1
2L−^1{
6
s^4}
=1
2t^3.Problem 3. Determine(a)L−^1{
7 s
s^2 + 4}
(b)L−^1{
4 s
s^2 − 16}(a)L−^1{
7 s
s^2 + 4}
= 7 L−^1{
s
s^2 + 22}
=7 cos 2t,from (v) of Table 66.1(b) L−^1
{
4 s
s^2 − 16}
= 4 L−^1{
s
s^2 − 42}=4 cosh 4t,from (x) of Table 66.1Problem 4. Find(a)L−^1{
3
s^2 − 7}
(b)L−^1{
2
(s−3)^5}(a) From (ix) of Table 66.1,L−^1{
a
s^2 −a^2}
=sinhatThusL−^1{
3
s^2 − 7}
= 3 L−^1{
1
s^2 −(√
7)^2}=3
√
7L−^1{ √
7s^2 −(√
7)^2}=3
√
7sinh√
7 t(b) From (xi) of Table 66.1,L−^1{
n!
(s−a)n+^1}
=eattnThus L−^1{
1
(s−a)n+^1}
=1
n!eattnand comparing withL−^1{
2
(s−3)^5}
shows thatn=4 anda=3.
HenceL−^1{
2
(s−3)^5}
= 2 L−^1{
1
(s−3)^5}= 2(
1
4!e^3 tt^4)
=1
12e^3 tt^4Problem 5. Determine(a)L−^1{
3
s^2 − 4 s+ 13}(b) L−^1{
2(s+1)
s^2 + 2 s+ 10}(a)L−^1{
3
s^2 − 4 s+ 13}
=L−^1{
3
(s−2)^2 + 32}=e^2 tsin 3t,
from (xii) of Table 66.1(b)L−^1{
2(s+1)
s^2 + 2 s+ 10}
=L−^1{
2(s+1)
(s+1)^2 + 32}=2e−tcos 3t,
from (xiii) of Table 66.1Problem 6. Determine(a)L−^1{
5
s^2 + 2 s− 3}(b) L−^1{
4 s− 3
s^2 − 4 s− 5}