Higher Engineering Mathematics

(Greg DeLong) #1
INVERSE LAPLACE TRANSFORMS 641

K

simpler fractions which may be inverted on sight.
For example, the function,


F(s)=

2 s− 3
s(s−3)

cannot be inverted on sight from Table 66.1. How-
ever, by using partial fractions,
2 s− 3
s(s−3)



1
s

+

1
s− 3

which may be inverted as

1 +e^3 tfrom (i) and (iii) of Table 64.1.
Partial fractions are discussed in Chapter 3, and a
summary of the forms of partial fractions is given in
Table 3.1 on page 18.


Problem 7. DetermineL−^1

{
4 s− 5
s^2 −s− 2

}

4 s− 5
s^2 −s− 2


4 s− 5
(s−2)(s+1)


A
(s−2)

+

B
(s+1)


A(s+1)+B(s−2)
(s−2)(s+1)

Hence 4s− 5 ≡A(s+1)+B(s−2).


Whens=2, 3= 3 A, from which,A=1.


Whens=−1,− 9 =− 3 B, from which,B=3.


HenceL−^1


{
4 s− 5
s^2 −s− 2

}

≡L−^1

{
1
s− 2

+

3
s+ 1

}

=L−^1

{
1
s− 2

}
+L−^1

{
3
s+ 1

}

=e^2 t+ 3 e−t, from (iii) of Table 66.1

Problem 8. FindL−^1

{
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3

}

3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3


A
s− 3

+

B
s+ 1

+

C
(s+1)^2

+

D
(s+1)^3


(
A(s+1)^3 +B(s−3)(s+1)^2
+C(s−3)(s+1)+D(s−3)

)

(s−3)(s+1)^3

Hence

3 s^3 +s^2 + 12 s+ 2 ≡A(s+1)^3 +B(s−3)(s+1)^2
+C(s−3)(s+1)+D(s−3)

Whens=3, 128 = 64 A, from which,A=2.

Whens=−1,− 12 =− 4 D, from which,D=3.

Equatings^3 terms gives: 3=A+B, from which,
B=1.

Equating constant terms gives:

2 =A− 3 B− 3 C− 3 D,

i.e. 2 = 2 − 3 − 3 C−9,

from which, 3C=−12 andC=− 4

Hence

L−^1

{
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3

}

≡L−^1

{
2
s− 3

+

1
s+ 1


4
(s+1)^2

+

3
(s+1)^3

}

=2e^3 t+e−t−4e−tt+

3
2

e−tt^2 ,

from (iii) and (xi) of Table 66.1

Problem 9. Determine

L−^1

{
5 s^2 + 8 s− 1
(s+3)(s^2 +1)

}

5 s^2 + 8 s− 1
(s+3)(s^2 +1)


A
s+ 3

+

Bs+C
(s^2 +1)


A(s^2 +1)+(Bs+C)(s+3)
(s+3)(s^2 +1)

Hence 5s^2 + 8 s− 1 ≡A(s^2 +1)+(Bs+C)(s+3).

Whens=−3, 20= 10 A, from which,A=2.

Equatings^2 terms gives: 5=A+B, from which,
B=3, sinceA=2.

Equatingsterms gives: 8= 3 B+C, from which,
C=−1, sinceB=3.
Free download pdf