INVERSE LAPLACE TRANSFORMS 641
K
simpler fractions which may be inverted on sight.
For example, the function,
F(s)=
2 s− 3
s(s−3)
cannot be inverted on sight from Table 66.1. How-
ever, by using partial fractions,
2 s− 3
s(s−3)
≡
1
s
+
1
s− 3
which may be inverted as
1 +e^3 tfrom (i) and (iii) of Table 64.1.
Partial fractions are discussed in Chapter 3, and a
summary of the forms of partial fractions is given in
Table 3.1 on page 18.
Problem 7. DetermineL−^1
{
4 s− 5
s^2 −s− 2
}
4 s− 5
s^2 −s− 2
≡
4 s− 5
(s−2)(s+1)
≡
A
(s−2)
+
B
(s+1)
≡
A(s+1)+B(s−2)
(s−2)(s+1)
Hence 4s− 5 ≡A(s+1)+B(s−2).
Whens=2, 3= 3 A, from which,A=1.
Whens=−1,− 9 =− 3 B, from which,B=3.
HenceL−^1
{
4 s− 5
s^2 −s− 2
}
≡L−^1
{
1
s− 2
+
3
s+ 1
}
=L−^1
{
1
s− 2
}
+L−^1
{
3
s+ 1
}
=e^2 t+ 3 e−t, from (iii) of Table 66.1
Problem 8. FindL−^1
{
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3
}
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3
≡
A
s− 3
+
B
s+ 1
+
C
(s+1)^2
+
D
(s+1)^3
≡
(
A(s+1)^3 +B(s−3)(s+1)^2
+C(s−3)(s+1)+D(s−3)
)
(s−3)(s+1)^3
Hence
3 s^3 +s^2 + 12 s+ 2 ≡A(s+1)^3 +B(s−3)(s+1)^2
+C(s−3)(s+1)+D(s−3)
Whens=3, 128 = 64 A, from which,A=2.
Whens=−1,− 12 =− 4 D, from which,D=3.
Equatings^3 terms gives: 3=A+B, from which,
B=1.
Equating constant terms gives:
2 =A− 3 B− 3 C− 3 D,
i.e. 2 = 2 − 3 − 3 C−9,
from which, 3C=−12 andC=− 4
Hence
L−^1
{
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3
}
≡L−^1
{
2
s− 3
+
1
s+ 1
−
4
(s+1)^2
+
3
(s+1)^3
}
=2e^3 t+e−t−4e−tt+
3
2
e−tt^2 ,
from (iii) and (xi) of Table 66.1
Problem 9. Determine
L−^1
{
5 s^2 + 8 s− 1
(s+3)(s^2 +1)
}
5 s^2 + 8 s− 1
(s+3)(s^2 +1)
≡
A
s+ 3
+
Bs+C
(s^2 +1)
≡
A(s^2 +1)+(Bs+C)(s+3)
(s+3)(s^2 +1)
Hence 5s^2 + 8 s− 1 ≡A(s^2 +1)+(Bs+C)(s+3).
Whens=−3, 20= 10 A, from which,A=2.
Equatings^2 terms gives: 5=A+B, from which,
B=3, sinceA=2.
Equatingsterms gives: 8= 3 B+C, from which,
C=−1, sinceB=3.