644 LAPLACE TRANSFORMS
− 4 − 3 − 20 − 1123 σ
jω
j
−j
Figure 66.2
Now try the following exercise.
Exercise 237 Further problems on poles
and zeros
- Determine for the transfer function:
R(s)=
50 (s+4)
s(s+2)(s^2 − 8 s+25)
(a) the zero and (b) the poles. Show the poles
and zeros on a pole-zero diagram.
[
(a)s=− 4 (b)s=0,s=−2,
s= 4 +j3,s= 4 −j 3
]
- Determine the poles and zeros for the func-
tion: F(s)=
(s−1)(s+2)
(s+3)(s^2 − 2 s+5)
and plot
them on a pole-zero map.
[
poles ats=−3,s= 1 +j2,s= 1 −j2,
zeros ats=+1,s=− 2
]
- For the functionG(s)=
s− 1
(s+2)(s^2 + 2 s+5)
determine the poles and zeros and show them
on a pole-zero diagram.
[
poles ats=−2,s=− 1 +j2,
s=− 1 −j2,
zero ats= 1
]
- Find the poles and zeros for the transfer func-
tion:H(s)=
s^2 − 5 s− 6
s(s^2 +4)
and plot the results
in the s-plane.
[
poles ats=0,s=+j2,s=−j2,
zeros ats=−1,s= 6
]