Higher Engineering Mathematics

(Greg DeLong) #1

644 LAPLACE TRANSFORMS


− 4 − 3 − 20 − 1123 σ


j

−j

Figure 66.2


Now try the following exercise.


Exercise 237 Further problems on poles
and zeros


  1. Determine for the transfer function:


R(s)=

50 (s+4)
s(s+2)(s^2 − 8 s+25)
(a) the zero and (b) the poles. Show the poles
and zeros on a pole-zero diagram.
[
(a)s=− 4 (b)s=0,s=−2,
s= 4 +j3,s= 4 −j 3

]


  1. Determine the poles and zeros for the func-


tion: F(s)=

(s−1)(s+2)
(s+3)(s^2 − 2 s+5)

and plot

them on a pole-zero map.
[
poles ats=−3,s= 1 +j2,s= 1 −j2,
zeros ats=+1,s=− 2

]


  1. For the functionG(s)=


s− 1
(s+2)(s^2 + 2 s+5)
determine the poles and zeros and show them
on a pole-zero diagram.
[
poles ats=−2,s=− 1 +j2,
s=− 1 −j2,
zero ats= 1

]


  1. Find the poles and zeros for the transfer func-


tion:H(s)=

s^2 − 5 s− 6
s(s^2 +4)

and plot the results

in the s-plane.
[
poles ats=0,s=+j2,s=−j2,
zeros ats=−1,s= 6

]
Free download pdf