660 FOURIER SERIES
−π −π/ 2 0 π/ 2 π
−π
− 4
π
4
f(x)
P 1
f(x)
x
−π −π/ 2 0 π/ 2 π x
P 2
P 1
f(x) f(x)
π
−π
4 /3 sin 3x
f(x)
π
−π/ 2
−π^0 π/^2 π x
4 /5 sin 5x
P 2
P 3
f(x)
(c)
(b)
(a)
−π
Figure 69.4
Problem 4. Determine the Fourier series for
the full wave rectified sine wave i=5 sin
θ
2
shown in Fig. 69.5.
i = 5 sin /2 θ
5
− 2 π 0 2 π 4 π θ
i
Figure 69.5
i=5 sin
θ
2
is a periodic function of period 2π.
Thus
i=f(θ)=a 0 +
∑∞
n= 1
(ancosnθ+bnsinnθ)
In this case it is better to take the range 0 to 2π
instead of−πto+πsince the waveform is continu-
ous between 0 and 2π.
a 0 =
1
2 π
∫ 2 π
0
f(θ)dθ=
1
2 π
∫ 2 π
0
5 sin
θ
2
dθ
=
5
2 π
[
−2 cos
θ
2
] 2 π
0
=
5
π
[(
−cos
2 π
2
)
−(−cos 0)
]
=
5
π
[(1)−(−1)]=
10
π
an=
1
π
∫ 2 π
0
5 sin
θ
2
cosnθdθ
=
5
π
∫ 2 π
0
1
2
{
sin
(
θ
2
+nθ
)
+sin
(
θ
2
−nθ
)}
dθ
(see Chapter 40, page 400)
=
5
2 π
[
−cos
[
θ
( 1
2 +n
)]
( 1
2 +n
)
−
cos
[
θ
( 1
2 −n
)]
( 1
2 −n
)
] 2 π
0