Higher Engineering Mathematics

(Greg DeLong) #1

660 FOURIER SERIES


−π −π/ 2 0 π/ 2 π

−π
− 4

π

4

f(x)

P 1

f(x)

x

−π −π/ 2 0 π/ 2 π x

P 2

P 1
f(x) f(x)
π

−π

4 /3 sin 3x

f(x)
π

−π/ 2
−π^0 π/^2 π x
4 /5 sin 5x

P 2

P 3

f(x)

(c)

(b)

(a)

−π

Figure 69.4


Problem 4. Determine the Fourier series for

the full wave rectified sine wave i=5 sin

θ
2
shown in Fig. 69.5.

i = 5 sin /2 θ
5

− 2 π 0 2 π 4 π θ

i

Figure 69.5

i=5 sin

θ
2

is a periodic function of period 2π.
Thus

i=f(θ)=a 0 +

∑∞

n= 1

(ancosnθ+bnsinnθ)

In this case it is better to take the range 0 to 2π
instead of−πto+πsince the waveform is continu-
ous between 0 and 2π.

a 0 =

1
2 π

∫ 2 π

0

f(θ)dθ=

1
2 π

∫ 2 π

0

5 sin

θ
2


=

5
2 π

[
−2 cos

θ
2

] 2 π

0

=

5
π

[(
−cos

2 π
2

)
−(−cos 0)

]

=

5
π

[(1)−(−1)]=

10
π

an=

1
π

∫ 2 π

0

5 sin

θ
2

cosnθdθ

=

5
π

∫ 2 π

0

1
2

{
sin

(
θ
2

+nθ

)

+sin

(
θ
2

−nθ

)}

(see Chapter 40, page 400)

=

5
2 π

[
−cos

[
θ

( 1
2 +n

)]

( 1
2 +n

)


cos

[
θ

( 1
2 −n

)]
( 1
2 −n

)

] 2 π

0
Free download pdf