Higher Engineering Mathematics

(Greg DeLong) #1
HYPERBOLIC FUNCTIONS 49

A

Let x=1,


then ch 1= 1 +


12
2 × 1

+

14
4 × 3 × 2 × 1

+

16
6 × 5 × 4 × 3 × 2 × 1

+ ···

= 1 + 0. 5 + 0. 04167 + 0. 001389 + ···

i.e. ch 1= 1. 5431 , correct to 4 decimal places,
which may be checked by using a calculator.


Problem 16. Determine, correct to 3 deci-
mal places, the value of sh 3 using the series
expansion for shx.

shx=x+

x^3
3!

+

x^5
5!

+···from above

Letx=3, then


sh 3= 3 +

33
3!

+

35
5!

+

37
7!

+

39
9!

+

311
11!

+···

= 3 + 4. 5 + 2. 025 + 0. 43393 + 0. 05424
+ 0. 00444 +···

i.e. sh 3= 10. 018 , correct to 3 decimal places.


Problem 17. Determine the power series for

2ch

(
θ
2

)
−sh 2θas far as the term inθ^5.

In the series expansion for chx, letx=


θ
2

then:

2ch

(
θ
2

)
= 2

[
1 +

(θ/2)^2
2!

+

(θ/2)^4
4!

+···

]

= 2 +

θ^2
4

+

θ^4
192

+···

In the series expansion for shx, letx= 2 θ, then:


sh 2θ= 2 θ+

(2θ)^3
3!

+

(2θ)^5
5!

+···

= 2 θ+

4
3

θ^3 +

4
15

θ^5 +···

Hence

ch

(
θ
2

)
−sh 2θ=

(
2 +

θ^2
4

+

θ^4
192

+···

)


(
2 θ+

4
3

θ^3 +

4
15

θ^5 +···

)

= 2 − 2 θ+

θ^2
4


4
3

θ^3 +

θ^4
192


4
15

θ^5 +···as far the

term inθ^5

Now try the following exercise.

Exercise 27 Further problems on series
expansions for coshxand sinhx


  1. Use the series expansion for chxto evalu-
    ate, correct to 4 decimal places: (a) ch 1. 5
    (b) ch 0. 8 [(a) 2.3524 (b) 1.3374]

  2. Use the series expansion for shxto evaluate,
    correct to 4 decimal places: (a) sh 0.5 (b) sh 2


[(a) 0.5211 (b) 3.6269]


  1. Expand the following as a power series as far
    as the term inx^5 : (a) sh 3x(b) ch 2x




(a) 3x+

9
2

x^3 +

81
40

x^5

(b) 1+ 2 x^2 +

2
3

x^4




In Problems 4 and 5, prove the given identities,
the series being taken as far as the term inθ^5 only.


  1. sh 2θ−shθ≡θ+


7
6

θ^3 +

31
120

θ^5


  1. 2 sh


θ
2

−ch

θ
2

≡− 1 +θ−

θ^2
8

+

θ^3
24


θ^4
384

+

θ^5
1920
Free download pdf