664 FOURIER SERIES=2
π[
xsinnx
n+cosnx
n^2]π−π=2
π[(
0 +cosnπ
n^2)
−(
0 +cosn(−π)
n^2)]
= 0bn=1
π∫π−πf(x) sinnxdx=1
π∫π−π2 xsinnxdx=2
π[
−xcosnx
n−∫ (
−cosnx
n)
dx]π−π
by parts=2
π[
−xcosnx
n+sinnx
n^2]π−π=2
π[(
−πcosnπ
n+sinnπ
n^2)−(
−(−π) cosn(−π)
n+sinn(−π)
n^2)]=2
π[
−πcosnπ
n−πcos (−nπ)
n]
=− 4
ncosnπWhen n is odd, bn=
4
n. Thus b 1 =4, b 3 =
4
3,b 5 =4
5, and so on.When n is even, bn=
− 4
n. Thus b 2 =−
4
2,b 4 =−4
4,b 6 =−4
6, and so on.Thus f(x)= 2 x=4 sinx−4
2sin 2x+4
3sin 3x−4
4sin 4x+4
5sin 5x−4
6sin 6x+···i.e. 2 x= 4(
sinx−1
2sin 2x+1
3sin 3x−1
4sin 4x+1
5sin 5x−1
6sin 6x+ ···)
(1)for values off(x) between−πandπ. For values
off(x) outside the range−πto+πthe sum of the
series is not equal tof(x).Problem 2. In the Fourier series of Problem 1,
by lettingx=π/2, deduce a series forπ/4.Whenx=π/2,f(x)=πfrom Fig. 70.2.
Thus, from the Fourier series of equation (1):2(π2)
= 4(
sinπ
2−1
2sin2 π
2+1
3sin3 π
2−1
4sin4 π
2+1
5sin5 π
2−1
6sin6 π
2+···)π= 4(
1 − 0 −1
3− 0 +1
5− 0 −1
7−···)i.e.π
4= 1 −1
3+1
5−1
7+···Problem 3. Obtain a Fourier series for the
function defined by:f(x)={
x, when 0<x<π
0, whenπ<x< 2 π.The defined function is shown in Fig. 70.3 between
0 and 2π. The function is constructed outside of this
range so that it is periodic of period 2π, as shown by
the broken line in Fig. 70.3.− 2 π−π 0 π 2 π 3 ππf(x) f(x) = xxFigure 70.3For a Fourier series:f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)It is more convenient in this case to take the limits
from0to2πinstead of from−πto+π. The value
of the Fourier coefficients are unaltered by this
change of limits. Hencea 0 =1
2 π∫ 2 π0f(x)dx=1
2 π[∫π0xdx+∫ 2 ππ0dx]=1
2 π[
x^2
2]π0=1
2 π(
π^2
2)
=π
4