EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 671
L
The function is defined by:
f(x)=
{
−2, when−π<x< 0
2, when 0 <x<π
From para. (b), bn=
2
π
∫π
0
f(x) sinnxdx
=
2
π
∫π
0
2 sinnxdx
=
4
π
[
−cosnx
n
]π
0
=
4
π
[(
−cosnπ
n
)
−
(
−
1
n
)]
=
4
πn
(1−cosnπ)
Whennis even, bn=0.
Whennis odd, bn=
4
πn
(1−(−1))=
8
πn
Hence b 1 =
8
π
,b 3 =
8
3 π
,b 5 =
8
5 π
,
and so on
Hence the Fourier series is:
f(x)=
8
π
(
sinx+
1
3
sin 3x+
1
5
sin 5x
+
1
7
sin 7x+···
)
Problem 4. Determine the Fourier series for
the functionf(θ)=θ^2 in the range−π<θ<π.
The function has a period of 2π.
A graph off(θ)=θ^2 is shown in Fig. 71.3 in the range
−πtoπwith period 2π. The function is symmetrical
about thef(θ) axis and is thus an even function. Thus
a Fourier cosine series will result of the form:
f(θ)=a 0 +
∑∞
n= 1
ancosnθ
From para. (a),
a 0 =
1
π
∫π
0
f(θ)dθ=
1
π
∫π
0
θ^2 dθ
=
1
π
[
θ^3
3
]π
0
=
π^2
3
− 2 π −π (^02) π θ
π^2
f(θ)
π
f(θ) = θ^2
Figure 71.3
and an=
2
π
∫π
0
f(θ) cosnθdθ
2
π
∫π
0
θ^2 cosnθdθ
2
π
[
θ^2 sinnθ
n
2 θcosnθ
n^2
−
2 sinnθ
n^3
]π
0
by parts
2
π
[(
0 +
2 πcosnπ
n^2
− 0
)
−(0)
]
4
n^2
cosnπ
When n is odd, an=
− 4
n^2
. Hence a 1 =
− 4
12
,
a 3 =
− 4
32
,a 5 =
− 4
52
, and so on.
Whennis even,an=
4
n^2
. Hencea 2 =
4
22
,a 4 =
4
42
,
and so on.
Hence the Fourier series is:
f(θ)=θ^2 =
π^2
3
− 4
(
cosθ−
1
22
cos 2θ+
1
32
cos 3θ
−
1
42
cos 4 θ+
1
52
cos 5θ−···
)
Problem 5. For the Fourier series of Problem 4,
letθ=πand show that
∑∞
n= 1
1
n^2
=
π^2
6
Whenθ=π,f(θ)=π^2 (see Fig. 71.3). Hence from
the Fourier series:
π^2 =
π^2
3
− 4
(
cosπ−
1
22
cos 2π+
1
32
cos 3π
−
1
42
cos 4π+
1
52
cos 5π−···
)