Higher Engineering Mathematics

(Greg DeLong) #1
EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 671

L

The function is defined by:


f(x)=

{
−2, when−π<x< 0

2, when 0 <x<π

From para. (b), bn=


2
π

∫π

0

f(x) sinnxdx

=

2
π

∫π

0

2 sinnxdx

=

4
π

[
−cosnx
n


0

=

4
π

[(
−cosnπ
n

)

(

1
n

)]

=

4
πn

(1−cosnπ)

Whennis even, bn=0.


Whennis odd, bn=


4
πn

(1−(−1))=

8
πn

Hence b 1 =


8
π

,b 3 =

8
3 π

,b 5 =

8
5 π

,

and so on

Hence the Fourier series is:


f(x)=

8
π

(
sinx+

1
3

sin 3x+

1
5

sin 5x

+

1
7

sin 7x+···

)

Problem 4. Determine the Fourier series for
the functionf(θ)=θ^2 in the range−π<θ<π.
The function has a period of 2π.

A graph off(θ)=θ^2 is shown in Fig. 71.3 in the range
−πtoπwith period 2π. The function is symmetrical
about thef(θ) axis and is thus an even function. Thus
a Fourier cosine series will result of the form:


f(θ)=a 0 +

∑∞

n= 1

ancosnθ

From para. (a),


a 0 =


1
π

∫π

0

f(θ)dθ=

1
π

∫π

0

θ^2 dθ

=

1
π

[
θ^3
3


0

=

π^2
3

− 2 π −π (^02) π θ
π^2
f(θ)
π
f(θ) = θ^2
Figure 71.3
and an=
2
π
∫π
0
f(θ) cosnθdθ


2
π
∫π
0
θ^2 cosnθdθ


2
π
[
θ^2 sinnθ
n




  • 2 θcosnθ
    n^2

    2 sinnθ
    n^3

    0
    by parts


    2
    π
    [(
    0 +
    2 πcosnπ
    n^2
    − 0
    )
    −(0)
    ]


    4
    n^2
    cosnπ
    When n is odd, an=
    − 4
    n^2




. Hence a 1 =


− 4
12

,

a 3 =

− 4
32

,a 5 =

− 4
52

, and so on.

Whennis even,an=

4
n^2

. Hencea 2 =


4
22

,a 4 =

4
42

,
and so on.

Hence the Fourier series is:

f(θ)=θ^2 =

π^2
3

− 4

(
cosθ−

1
22

cos 2θ+

1
32

cos 3θ


1
42

cos 4 θ+

1
52

cos 5θ−···

)

Problem 5. For the Fourier series of Problem 4,

letθ=πand show that

∑∞

n= 1

1
n^2

=

π^2
6

Whenθ=π,f(θ)=π^2 (see Fig. 71.3). Hence from
the Fourier series:

π^2 =

π^2
3

− 4

(
cosπ−

1
22

cos 2π+

1
32

cos 3π


1
42

cos 4π+

1
52

cos 5π−···

)
Free download pdf