EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 673L
as in Section 71.2(a), i.e.f(x)=a 0 +∑∞n= 1ancosnxwhere a 0 =1
π∫π0f(x)dxand an=2
π∫π0f(x) cosnxdx(c) If ahalf-range sine seriesis required for the
functionf(x)=xin the range 0 toπthen an
odd periodic function is required. In Figure 71.5,
f(x)=xis shown plotted fromx=0tox=π.
Since an odd function is symmetrical about the
origin the lineCDis constructed as shown. If
the sawtooth waveform produced is assumed to
be periodic of period 2πoutside of this range,
then the waveform is as shown in Fig. 71.5.
When a half-range sine series is required then
the Fourier coefficientbn is calculated as in
Section 71.2(b), i.e.f(x)=∑∞n= 1bnsinnxwhere bn=2
π∫π0f(x) sinnxdxf(x)
f(x) = x
π−π− 2 π −π 0 2 π 3 πxC
πDFigure 71.5
Problem 6. Determine the half-range Fourier
cosine series to represent the functionf(x)= 3 x
in the range 0≤x≤π.From para. (b), for a half-range cosine series:
f(x)=a 0 +∑∞n= 1ancosnxWhenf(x)= 3 x,a 0 =1
π∫π0f(x)dx=1
π∫π03 xdx=3
π[
x^2
2]π0=3 π
2an=2
π∫π0f(x) cosnxdx=2
π∫π03 xcosnxdx=6
π[
xsinnx
n+cosnx
n^2]π0by parts=6
π[(
πsinnπ
n+cosnπ
n^2)
−(
0 +cos 0
n^2)]=6
π(
0 +cosnπ
n^2−cos 0
n^2)=6
πn^2(cosnπ−1)Whennis even,an= 0Whennis odd,an=6
πn^2(− 1 −1)=− 12
πn^2Hencea 1 =− 12
π,a 3 =− 12
π 32,a 5 =− 12
π 52, and so on.Hence the half-range Fourier cosine series is
given by:f(x)= 3 x=3 π
2−12
π(
cosx+1
32cos 3x+1
52cos 5x+···)Problem 7. Find the half-range Fourier sine
series to represent the functionf(x)= 3 xin the
range 0≤x≤π.From para. (c), for a half-range sine series:f(x)=∑∞n= 1bnsinnxWhenf(x)= 3 x,bn=2
π∫π0f(x) sinnxdx=2
π∫π03 xsinnxdx=6
π[
−xcosnx
n+sinnx
n^2]π0by parts